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Abstract
Transverse feedback systems use pickups signals to mea-

sure the beam instabilities and kickers to correct the beam.
The correction signal is calculated according to the transfer
matrices between the pickups and the kickers. However, er-
rors due to magnetic field imperfections and magnets mis-
alignments lead to deviations in the transfer matrices from
their nominal values, which affects the feedback quality in
a negative manner. In this work we address a new concept
for robust feedback system against optics errors or uncer-
tainties. A kicker and multiple pickups are used for each
transversal direction. We introduce perturbation terms to
the transfer matrices between the kicker and the pickups.
Subsequently, the Extended Kalman Filter is used to esti-
mate the feedback signal and the perturbation terms using
the measurements from the pickups. Results for the heavy
ions synchrotron SIS 18 at the GSI are shown.

INTRODUCTION
Transversal beam oscillations can occur in synchrotrons

directly after injection due to injection errors, which can be
in position and angle. Furthermore, higher beam intensities
are planed for the FAIR project at the GSI in Darmstadt.
This leads to a stronger interaction between the travelling
beam and accelerator objects, which increases coherent in-
stabilities. Therefore, beam oscillations will occur when
the natural damping becomes not enough to attenuate these
oscillations and suppress the potential instabilities.

Beam transversal oscillations lead to emittance blow up
caused by the decoherence of the oscillating beam. This de-
coherence comes from the tune spread of the bam particles.
The emittance blow up deteriorates the beam quality since
it reduces the luminosity [2, 1]. Therefore, beam oscilla-
tions must be mitigated actively by employing a feedback
system. The Transversal Feedback System (TFS) senses
instabilities or oscillations of the beam by means of Pick-
ups (PUs) and acts back on the beam by means of actuators
called Kickers.

In [3], an approach has been applied for the heavy ions
synchrotron SIS 18 at the GSI, where the horizontal and
vertical beam angles at the place of the Kicker along the
accelerator ring get estimated using PUs at two different
places for each of the transversal directions. The reason
we need PUs at two different places is that only beam dis-
placements from the ideal trajectory but not the angles can
be measured by PUs.

The TFS itself can lead to beam quality deterioration
through its noise generated at the PUs, especially for lower
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currents. Correcting the beam with a big noise portion at
the output of the feedback system will just lead to beam
heating [4]. To reduce noise contribution in the feedback
signal a new approach of using multiple PUs for noise min-
imization has been addressed in [5].

The feedback signal is calculated based on the accelera-
tor optics, i.e., the transfer matrices between the PUs and
the Kicker. Thus, any deviations in the optics parameters
from the known nominal values lead to disturbances in the
calculated feedback signal. Therefore, the beam will be
disturbed and gets worse. There are many reasons for op-
tics errors in particle accelerator, e.g., magnetic field imper-
fections and magnets misalignments. A new concept for ro-
bust feedback system against optics errors or uncertainties
is addressed in this work. We introduce perturbation terms
to the transfer matrices between the PUs and the Kicker
for each of the transversal directions. Subsequently, the
Extended Kalman Filter is used to estimate the feedback
signal and the perturbation terms using the measurements
from the PUs.

SYSTEM MODEL

We address a bunch-by-bunch feedback system, which
deals with the signals of different bunches as parallel chan-
nels. The TFS is copmosed of multiple PUs at different
places and one Kicker for each transversal direction. The
signals from the PUs, which correspond to the transversal
beam displacements, are delayed differently, such that they
correspond to the same bunch at every time. The driving
signal at the kicker is the output of the digital processing of
the delayed PUs signals. Figure 1 shows a block diagram
of the TFS.
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Figure 1: Block diagram of the TFS.

Let xP(n) = [x1(n), · · · , xM (n)]T be the vector of the
beam positions (horizontal or vertical) at the M PUs at the
nth turn for one of the bunches. Therefore, the measure-
ment vector xMS(n) will be this positions vector distorted
by the noise vector z(n) ∼ N(0, Rzz) of the PUs, i.e.,
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xMS(n) = xP(n) + [z1(n), · · · , zM (n)]T

= xP(n) + z(n).
(1)

Define
x(n) = [xDK(n), x′DK(n)]T (2)

to be the beam status vector at the nth turn, where xDK(n)
is the beam position at the Kicker place, and x′DK(n) is the
beam angle at this place.

The beam status vector at turn n + 1 can be found in
dependence of the beam status vector at turn n according
to the accelerator optics model. It will be the multiplica-
tion of the complete turn transfer matrix MKK(n) by the
kicked beam status vector at turn n. Furthermore, small
disturbances can be added to this model. Thus,

x(n+ 1) = MKK(n) · xk(n) + np(n), (3)

where
x
k(n) = x(n) + [0, Δx′DK(n)]T , (4)

is the kicked beam status vector by [0, Δx′DK(n)]T ,
Δx′DK(n) denotes the kick at turn n, and np(n) =
[np1(n), np2(n)]

T
∼ N(0, Rnn) denotes the distur-

bances in the beam position and angle due to nonlinearities
and external sources.

The measurement vector xMS(n) in Eq. (1) can be writ-
ten in dependence of the beam status vector at the nth turn
as follows

xMS(n) = MMS(n) · x(n) + z(n), (5)

where the measurement matrix MMS(n) is given by

MMS(n) = IM ⊗ [0, 1] ·

⎡
⎢⎣

MPK1(n)
...

MPKM(n)

⎤
⎥⎦x(n) + z(n),

(6)
where IM denotes the identity matrix of dimension M , and
MPK1(n), · · · , MPKM(n) dentote the transfer matrices
from the Kicker to the M PUs respectively.

KALMAN FILTERING
The Kalman Filter is an estimator for the so called linear-

quadratic problem, which is the problem of estimating the
instantaneous state of a linear dynamic system perturbed by
white noise using measurements linearly related to the state
but corrupted by white noise. The resulting estimator is
statistically optimal with respect to any quadratic function
of estimation error [6].

If the accelerator optics are known for every turn, the
transfer matrix MKK(n) and the measurement matrix
MMS(n) will be known exactly. Since the kick in Eq. (4)
is the input of the TFS, and therefore known, the beam sta-
tus vector x(n) is the only one to be estimated for com-
plete identification of the system. Therefore, the Kalman

Filter will be the optimal estimator of the beam status vec-
tor under the assumption of white noises, since the system
dynamic model in Eq. (3) and the measurement model in
Eq. (9) are linear.

However, deviations in the optics from the nominal
driven values exist always due to many reasons as men-
tioned before. This leads to the fact that the complete turn
transfer matrix and the measurement matrix are not known
exactly. Therefore, complete system identification for more
precise estimation of the beam status vector and more effe-
cient feedback requires the estimation of these matrices as
well.

Our approach is to consider the matrices as superposition
of known parts, which are the nominal values, and unkown
parts to be estimated, i.e.,

MKK(n) = M
nom
KK (n) +M

P
KK(n) (7)

MMS(n) = M
nom
MS (n) +M

P
MS(n). (8)

The uncertainty matrices M
P
KK(n) and M

P
MS(n) will be

then considered as part of the system status variables to
be estimated. Therefore, the system status vector can be
written as

X(n) = [x(n), V ec(MP
KK(n))T , V ec(MP

MS(n))
T ]T ,

(9)
where V ec(·) denotes the vectorization operator of a ma-
trix, which stacks the columns of the matrix into a vector

For constant optics and errors over the time, and there-
fore constant complete turn transfer matrix and measure-
ment matrix, the observability of the whole system has
been shown according to the criterion in [7].

The evolution of the system state vector will be thus ac-
cording to a nonlinear function, i.e.,

X(n+ 1) = f(X(n)) + [0, Δx′DK(n)]T +NP, (10)

where the beam status propagates like in Eq. (3), and the
uncertainty matrices propagate without any changes.

The Extended Kalman Filter is a well known approach
for solving such a system. It works iteratively as follows
[7]:

• Computing the predicted state estimate

X̂
−(n+ 1) = f(X̂+(n)) + [0, Δx′DK(n)]T , (11)

• Computing the predicted measurement

x̂MS(n+ 1) = M
−

MS(n+ 1) · x−(n+ 1)︸ ︷︷ ︸
h(X̂−(n+1))

(12)

• Conditioning the predicted estimate on the measure-
ment

X̂
+(n+ 1) = X̂

−(n+ 1) +K(n+1) · (xMS(n+ 1)

− x̂MS(n+ 1))

(13)
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The Kalman gain at turn n+ 1 is given by

K(n+1) = P
−

(n+1) ·H
T
(n+1)

· [H(n+1)P
−

(n+1)H
T
(n+1) +RZZ]

−1,
(14)

the a priori covariance matrix can be written as

P
−

(n+1) = ΦnP
+
(n)Φ

T
n +RNN, (15)

and the a posteriori covariance matrix

P
+
(n+1) = [I−K(n+1)H(n+1)]P

−

(n+1), (16)

Φn and H(n+1) denote the linear approximation matrices
of the status evolution function f(X(n)) and the measure-
ment function h(X̂(n+ 1)) respectively.

RESULTS
In this section we show simulation results of the above

addressed approach for the Synchrotron SIS 18 at the GSI.
In the SIS 18 there are 12 beam position PUs for the hor-
izontal and the vertical directions, which are located pe-
riodically along the synchrotron ring. There is also one
feedback Kicker for each transversal direction.

During acceleration, focusing changes continuously
from the so called doublet mode to the triplet mode, which
changes the betatron functions during opreation. We show
in the following simulation results for the triplet mode in
the horizontal direction for using the two closest PUs to
the Kicker. The nominal tune for the horizontal direc-
tion is Qnom

x = 4.31, where we assume an acutal tune of
Qx = 4.15. This corresponds to about 60◦ deviation in
the tune value. The phase difference between the Kicker
and the first PU has a nominal value Δφ1 = 103.7◦, and
the phase difference between the two PUs is Δφ = 129.3◦

nominally. The deviation from these nominal phase ad-
vances is assumed to be 30%. The nominal and actual val-
ues of the twiss parameters for the PUs and the Kicker are
shown in Table 1.

Table 1: Twiss Parameters
mode βk βpu αk αpu

Nominal 14.06 12.67 -1.36 1.24
Actual 9.84 16.47 -1.63 1.74

A bunch oscillation with initial status vector x(0) =
[2 cm, 0 rad]T and disturbances np ∼ N(0, Rnn), where
Rnn = 10−7

·diag(0.73, 0.028), has been generated using
the actual optics parameters. The measurements are dis-
turbed by an additive white Gaussian noise with zero mean
and standard deviation σz = 1 cm.

Figure 1 shows the Mean Squared Error (MSE) of beam
angle for three estimators. The blue curve corresponds to
the MSE of our addressed robust approach by using the Ex-
tended Kalman Filter, where the black curve corresponds
to the MSE of the vector summation approach addressed

in [3] by using the nominal optics parameters as a compar-
ision reference, and the red curve corresponds to the MSE
of the approach of applying the linear Kalman Filter by us-
ing the nominal values of the optics parameters as well as
an other comparision references.
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Figure 2: MSE of beam angle estimations.

The results show that the average value over time of the
MSE for our addressed robust approach is about one third
of the corresponding value for the vector summation ap-
proach, and one fifth of the corresponding value for the ap-
proach of applying the linear Kalman Filter. This leads to
an important enhancement in the beam emittance growth,
and therefore the collider luminosity using our approach.

Finally, it is very important to mention that using this
new approach leads to enhancements with the price of more
computational cost and implementation complexity. The
impact of rounding errors on the performance must be in-
vestigated as well.
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