
THE FLUKA LINEBUILDER AND ELEMENT DATABASE: TOOLS FOR
BUILDING COMPLEX MODELS OF ACCELERATOR BEAM LINES

A. Mereghetti∗, University of Manchester, M13 9PL, UK, and CERN, Geneva, Switzerland
V. Boccone, F. Cerutti, R. Versaci, V. Vlachoudis, CERN, Geneva, Switzerland

Abstract
Extended FLUKA models of accelerator beam lines can

be extremely complex: heavy to manipulate, poorly versa-

tile and prone to mismatched positioning. We developed a

framework capable of creating the FLUKA model of an ar-

bitrary portion of a given accelerator, starting from the op-

tics configuration and a few other information provided by

the user. The framework includes a builder (LineBuilder),

an element database and a series of configuration and anal-

ysis scripts. The LineBuilder is a Python program aimed

at dynamically assembling complex FLUKA models of ac-

celerator beam lines: positions, magnetic fields and scor-

ings are automatically set up, and geometry details such as

apertures of collimators, tilting and misalignment of ele-

ments, beam pipes and tunnel geometries can be entered

at user’s will. The element database (FEDB) is a collection

of detailed FLUKA geometry models of machine elements.

This framework has been widely used for recent LHC and

SPS beam-machine interaction studies at CERN, and led

to a drastic reduction in the time otherwise required to re-

work old machine models, and to a coherent and traceable

description of the inputs used for all the simulations.

INTRODUCTION
A relevant asset of the FLUKA [1, 2] Monte Carlo code

is the use of a simple text file as source of input informa-

tion, where the user states all the simulation settings and

fully describes the geometry, with very limited need of cod-

ing. Simulations of extended accelerator complexes imply

the use of large and “static” files: their difficult modifica-

tion can be an important liability, especially in case of de-

sign of new elements or systems, for which flexibility is a

desired feature. Moreover, simulating many points of inter-

est of the same accelerator complex, like the eight Insertion

Regions (IRs) of the Large Hadron Collider (LHC), leads

to at least an equal number of FLUKA input files: obvious

problems of synchronisation arise, concerning in particu-

lar geometry definitions. Import/export of elements from

one geometry to another one, coherent material definition,

propagation of follow-ups and implementation of new de-

tails become issues as well.

A new strategy has been recently adopted by the FLUKA

Team at CERN: the definition of each accelerator element

(including magnets, collimators, monitors, absorbers, tun-

nel areas. . . ) is collected in a database, featured by a library

of shared materials; the final geometry is automatically cre-

∗ alessio.mereghetti@cern.ch

ated by a builder, on the basis of the optics of the machine

and directives customised by the user. Clear assets are:

• full synchronisation of the final FLUKA input file

with the optics of the machine; moreover, the user is

less concerned with precise positioning and magnetic

settings of elements, automatically assured, and com-

parisons between different optics can be easily set up;

• many small specific FLUKA files can be handled and

debugged more easily than a single huge file; more-

over, follow-ups in the geometry description of ele-

ments can be instantaneously propagated, with clear

benefit to all the concerned users;

• great flexibility in importing and exporting elements.

Everything is kept under the Subversion (SVN)1 revision

control system.

A similar approach was already set up for collimator

induced shower simulations concerning the LHC IR3 and

IR7 cleaning insertions, although based on only one big in-

put file and a builder fairly focussed on these regions. The

present approach can be applied to any portion of any ac-

celerator of interest, once the suitable database of elements

is set up.

Latest developments in the FLUKA code concerning the

assembly of separate input files and new directives for ge-

ometry transformations have significantly simplified the

overall process and increased the robustness of the built ge-

ometry.

Framework
SVN repositories for many IRs of the LHC, Long

Straight Sections (LSSs) of the Super Proton Syn-

chrotron (SPS), and the two injection lines TI2 (“Tunnel

d’Injection”) and TI8 have been set up and given a com-

mon internal structure, so that useful FLUKA user routines

and other simulation settings can be easily exported and

used for different portions of the same machine, or even

for a different machine. Configuration scripts and analysis

tools have been developed accordingly.

A set of special FLUKA source routines is available, for

simulating the interaction of the beam with the residual gas

in the pipe, for the readout of loss maps from tracking codes

like SixTrack [3], and for the readout of beam distributions

at a certain location along the accelerator as computed by

optics codes like MADX [4].

1http://subversion.apache.org

Proceedings of IPAC2012, New Orleans, Louisiana, USA WEPPD071

07 Accelerator Technology and Main Systems

T31 Subsystems, Technology and Components, Other

ISBN 978-3-95450-115-1

2687 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



THE FLUKA ELEMENT DATABASE
Every element inserted in the FLUKA Element Data-

Base (FEDB) is described isolated from the others, at

the origin of the reference system: its full description is

split in specific text files, declaring the needed analytical

bodies, their logical combinations for obtaining regions,

and the assignment of materials. Additional FLUKA files

(e.g. defining useful scoring detectors or sizing the steps of

particle transport in magnetic fields) and information files

(e.g. technical documents, drawings, pictures. . . ) can be

stored as well.

Special elements called “assemblies” are obtained com-

bining more than one basic element. Figure 1 shows a 3D

rendering through the FLAIR Geometry Editor [5] of the

Roman Pot assembly for the FLUKA geometry of LHC

IR5: in order to create the assembly, the basic geometry

model of the pots (featured by the beam pipe and the sup-

port structure) is combined with the geometry model of the

detectors. The important asset of assemblies is the pos-

sibility of automatically modifying the relative positions of

the used basic elements, according to user-defined or optics

specifications (e.g. the position with respect to the beam

axis at which the detector should be placed).

Figure 1: 3D rendering of the FLUKA geometry of the

Roman Pot assembly. The geometry is cut in order to show

the inside.

FLUKA geometries of tunnels and underground installa-

tions are stored as well, with a full 3D description whenever

details of non-standard tunnel regions are needed (e.g. the

LHC experimental caverns and the service areas UJ and

RR), or with a simple 2D model of the cross section of a

standard tunnel (e.g. the tunnel of the LHC arc).

Most of the elements of the LHC and the TI2/TI8 injec-

tion lines have been already modelled in FLUKA and in-

serted into the database, while SPS elements are steadily

being inserted. The same applies to tunnels and under-

ground installations.

THE LINEBUILDER
The LineBuilder is a Python program with a complete set

of libraries, aimed at the generation of complex FLUKA

geometries of accelerator beam lines, based on TWISS2

files and directives from the user. It is particularly ef-

fective in assuring precise positioning of replicated ele-

ments, which can be rather painful and error-prone if done

by hand, especially in case of long accelerator lines and

tiny bendings. The user selects the needed prototypes from

the FEDB, and the program automatically creates a replica

for each occurrence in the TWISS files matching the cor-

responding name, with the correct position and orienta-

tion. The LineBuilder is provided with FLUKA routines

for magnetic fields: different field types are available and,

on the basis of the element strength, intensities are auto-

matically scaled according to the magnetic rigidity of the

beam. The user can assign any set of scoring detectors to

any element family, to be repeated for every replica inserted

in the geometry.

The beam pipe is automatically created, following user

specifications about shape, dimensions, and materials. A

limited amount of smooth transitions is allowed.

The user can put any element (but dipoles) at the origin

of the resulting FLUKA geometry.

Auxiliary files allow the user to modify the sequence

of elements, with no need of manually editing the TWISS

file(s): it is thus possible for instance to insert elements off

the beam line, e.g. Beam Loss Monitors.

Collimators can be singularly given the proper aperture,

roll angle about their longitudinal axis, and jaw tilt by

means of an external file: the user can thus easily imple-

ment different collimation settings for the same optics.

It is possible to embed the built portion of accelerator

in the mentioned 3D model of a tunnel (provided the use

of special flags in the tunnel file, instructing the program

about the affected geometry regions), or to wrap a tunnel

with a constant cross section around the machine.

Figure 2 shows 3D renderings of the last 270 m of the

TI2 injection line: the presence of vertical dipoles further

tilted by ∼15 mrad about their longitudinal axis leads to

a very complicated chain of geometry transformations for

placing the downstream magnets (that would be quite time-

consuming, error-prone and particularly painful in case of

editing by hand). In this case, the design orbit computed

by MADX can be reproduced by FLUKA with an accuracy

better than 1 μm over the entire geometry3.

2A TWISS file is the output file from an optics code (e.g. MADX), stat-

ing the longitudinal coordinate, the associated optics functions (TWISS

parameters) and strengths of each element along the beam line.
3It should be kept in mind that FLUKA tracks particles in a magnetic

field dividing the curved path into linear substeps.

WEPPD071 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

2688C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

07 Accelerator Technology and Main Systems

T31 Subsystems, Technology and Components, Other



Figure 2: 3D renderings of the last 270 m of the TI2 injection line. Upper frame: view upstream of the TCDIH.29205

collimator. Lower frame, left side: view downstream of the TCDIH.29050 collimator. Lower frame, right side: view

downstream of the TCDIV.29234 collimator. The quoted collimators are in foreground, transverserly cut.

Future Developments

Although the LineBuilder can build the geometry of a

two-beams accelerator, at present it cannot embed the ge-

ometry of an injection (or extraction) line into the one of

the circulating beam: this feature can be interesting for sup-

porting the design of a collimation system in the vicinity of

such a point.

When the LineBuilder is used for building the entire ge-

ometry of a circular accelerator, precision issues on the

closure of the ring (presently below a cm in the case of

the SPS accelerator, i.e. over almost 7 km) and on the

management of the region definitions arise. Follow-ups of

the code in this direction can be of interest for relatively

small machines, like the Proton Synchrotron at CERN or

the DAΦNE accelerator at Laboratori Nazionali di Frascati,

Italy.

3D scoring meshes (“USRBIN cards”) can heavily affect

the computation time, especially if they are present in high

number and if they are translated/tilted in order to match

the position/orientation of the replica they are associated

to. If a detector is assigned a purely translational trans-

formation, its definition could be automatically modified,

in order to drop the associated transformation, and conse-

quently gain computation time.

CONCLUSIONS
An innovative approach to the preparation of extended

FLUKA geometries of any accelerator beam line has been

developed, based on the use of the FEDB and the Line-

Builder, ensuring accurate positioning of elements, syn-

chronisation with optics, easier handling of FLUKA input

files, prompt propagation of geometry modifications, and

uniform material definition.

REFERENCES
[1] A. Fassò et al., “FLUKA: a Multi-Particle Transport Code”,

CERN-2005-10, INFN/TC-05/11, SLAC-R-773.

[2] G. Battistoni et al., “The FLUKA code: Description and

Benchmarking”, Proc. of the Hadronic Shower Simulation

Workshop 2006, Fermilab 6th–8th September 2006, M. Al-

brow, R. Raja eds., AIP Conf. Proc. 896, 31-49, 2007.

[3] G. Robert-Demolaize et al., Proc. of PAC05, Knoxville, TN,

USA, 2005.

[4] F. Schmidt, G. Iselin, H. Grote, “MADX User Guide”,

http://madx.web.cern.ch/madx/

[5] V. Vlachoudis, “FLAIR: A Powerful But User Friendly

Graphical Interface For FLUKA”, Proc. of the International

Conference on Mathematics, Computational Methods and

Reactor Physics (M&C 2009), Saratoga Springs, New York,

2009.

Proceedings of IPAC2012, New Orleans, Louisiana, USA WEPPD071

07 Accelerator Technology and Main Systems

T31 Subsystems, Technology and Components, Other

ISBN 978-3-95450-115-1

2689 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


