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Additional x-rays taken after brazing were used to 
confirm the braze alloy flowed as expected (Figure 5). 

 
 
 
 
 
 
 
 

Figure 5: X-ray imaging showing incomplete braze flow 
(left) and complete braze flow (right) 

 
For crotch ABS with opening, since most of the high 

power fans from IDs will be intercepted at the front end 
masks, a similar GlidCop brazed to copper cooling tube 
approach was chosen. Given that the cooling tubes cannot 
be placed on the mid-plane due to the aperture, a second 
tubing loop was added to ensure adequate cooling. One 
standard size opening (75mm H x 18mm V) was chosen 
for all apertured crotch ABS to eliminate the chance of 
installing an ABS with the wrong opening at a given 
location. This is also a major safety requirement for top-
off injection. 

The last type of absorber used in the storage ring is the 
flange ABS. The insert of the flange ABS is made of 
GlidCop which has a tapered aperture of 64mm H x 
21mm V. Flange ABS are located downstream of the 
dipole chambers, and upstream of some critical 
components such as kicker chambers. Due to the low 
power expected at these locations, braze flow is not as big 
of a concern as with the other ABS. 

RF SHIELDED BELLOWS 
An RF shielded bellows joins chambers between 

adjacent girder assemblies, which compensates for 
chamber to chamber misalignment. BPMs mounted to the 
multipole chambers are positioned relative to the 
magnetic center of the girder assembly, which prevents 
the end flanges from ending up in the ideal position and 
can result in alignment errors of a few mm between 
chambers. The RF bellows were designed to 
accommodate a lateral offset of ±2 mm as well an 
angularity of ± 15 mrad. In addition the bellows must 
accommodate the compression due to the in-situ bake out. 

 The internal structure of the bellows was optimized to 
have low impedance and minimal losses in the extreme 
mounting positions [4]. After several iterations, an outside 
RF finger [5] design was chosen for its lower impedance 
with the various offsets required [6]. The outer bellows 
weldment which includes the convolutions, end flanges 
and water cooling provisions was purchased as a 
complete unit from a commercial vendor. The internal 
components were produced in house at BNL. The 
mechanical assembly work is performed in a class 1000 
clean room to prevent the possibility of contamination.  

The internal structure of the NSLS-II RF bellows is 
shown in Figure 6. Starting from left to right, a stainless 
steel clamp plate (shown in green) with an RF spring 

groove is used to secure a pair of GlidCop fingers 
(brown) to the upstream bellows flange. The RF spring 
provides electrical contact to the adjacent chamber.   

 

Figure 6: Exploded view of RF bellows (left) with 
convolutions removed and side view of completed unit 

 
The GlidCop fingers were slotted to improve the 

flexibility and provide multiple points of contact. A silver 
plated stainless steel sleeve (shown in green on the right) 
with RF spring groove is inserted from the downstream 
flange. The sleeve is silver plated to increase the thermal 
conduction of heat from the sleeve to the water cooled 
flange and to decrease the sliding friction between the 
sleeve and GlidCop fingers. Silver plated Inconel springs 
(shown in blue) are used to provide contact pressure 
between the sleeve and the GlidCop fingers. The silver 
plating reduces the particle generation resulting from 
sliding interface between the springs and the fingers. 

Currently the RF bellows are in full scale production 
with over 100 units ready for assembly. To date, three 
storage ring cells have been successfully interconnected 
with RF shielded bellows. 
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