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Abstract 
The current sharing temperature of 6.5 K for the 
superconducting undulator magnet being developed at 
Argonne National Laboratory drives the thermal design of 
the magnet’s cooling system.  In order to remain below 
the current sharing temperature, a thermo-siphon cooling 
loop is being developed to sweep the anticipated heat load 
away from the magnet windings and deposit it in the 
associated liquid helium reservoir located above the 
magnet.  Performance of the magnet’s cooling system is 
crucially dependent on the ability of the recondenser to 
maintain the reservoir’s saturation temperature near 4 K, 
despite thermal stratification and slowly varying thermal 
profiles within the vapor region above the liquid in the 
reservoir.  Here we report the results of a modelling 
investigation regarding the impact of various heat transfer 
mechanisms in a recondensing system, on the time-
varying saturation temperature within the helium 
reservoir. Future experimental work is being done to 
verify the modelling results. 

PROJECT BACKGROUND 
The project analyses the helium recondensing system 

comprising a part of the cryogenic cooling system for the 
Superconducting Undulator (SCU) assembly of the 
Advanced Photon Source (APS) at Argonne National Lab. 
The project’s objective is to optimize the use of a 
cryocooler in order to efficiently remove heat from the 
thermo-siphon cooling loop that itself removes heat from 
the magnet windings on the SCU assembly. A liquid 
helium bath is included as part of the closed-loop system 
in order to maintain cooling in the event of a power loss to 
the cryocooler.  Thus, this project investigates the best 
possible way to remove heat from the liquid helium bath.  
Condensation tip geometries and heat transfer paths were 
studied in order to determine their impact on the overall 
heat removal. 

At the cold-tip of the cryocooler, it is best to design a 
surface that will allow the condensed helium film to 
remain thin in order to promote heat transfer.  A thicker 
film will increase the thermal resistance between the gas 
and solid, thereby decreasing the condensation rate and 
decreasing the heat transfer ability of the condenser tip. 

More significantly, this study found that other factors in 
the heat transfer path between the helium bath and the 
cold tip of the cryocooler were more important than the 
geometry of the condenser tip.  Therefore, this paper 
provides a broad methodology for optimizing the cooling 
associated with a re-condensing liquid helium bath. 

MODELLING METHODOLOGY 
Figure 1 displays the thermal resistance network 

associated with the heat transfer paths in the system.  
Each resistance region was characterized separately using 
a different type of modeling software.  The results were 
compared in order to determine the relative significance 
of the various thermal resistances.  Engineering Equation 
Solver (EES), Finite Element Heat Transfer (FEHT), and 
Ansys CFX software were used to separately calculate the 
thermal resistances associated respectively with the film 
condensation, conduction through the vessel wall, and 
convection in the gas.  

 

 
Figure 1: Thermal Resistance Network. 

FILM CONDENSATION (EES) 
At the cold tip of the cryocooler, gas condenses, 

coalesces into a film layer and runs down the condenser 
until it drips off the bottom of the condensing surface. As 
the liquid film flows toward the bottom of the condensing 
surface, it grows thicker.  As given by theoretical 
considerations (see for example [1]), the film thickness at 
a distance x from the top of the condensing surface is 
calculated according to 

ߜ  = ൝ ସ	௫	௞೗,ೞೌ೟	ఓ೗,ೞೌ೟ሺ ೞ்ೌ೟ି ೞ்ሻఘ೗,ೞೌ೟	௚ ୡ୭ୱఏ൫ఘ೗,ೞೌ೟ିఘೡ,ೞೌ೟൯൤∆௜ೡೌ೛ାయ	೎೗,ೞೌ೟ሺ೅ೞೌ೟ష೅ೞሻఴ ൨ൡଵ ସൗ
 (1) 

 

where kl,sat is the thermal conductivity, μl,sat is the 
viscocity, ρl,sat is the density, Tsat is the saturation 
temperature, Ts is the condenser tip surface temperature, g 
is the gravitational constant, θ is the condenser surface 
angle from vertical, Δivap is the latent heat of vaporization, 
and cl,sat is specific heat. 

In order to estimate the thermal resistance of the entire 
film layer, the condensing surface has been divided into 
multiple sections of equal distance dx, each with their 
own individual film thickness and associated thermal 
resistance (or conductance), see fig. 2.  The net 
conductance is then determined by integrating the 
individual section conductances over the total length (L) 
along the condensing surface  
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Figure 5: Thermal Time Constants for Helium. 

The temperature profiles (in units of Kelvin) in the 
helium vapor reveal that the time dependent cooling load 
at the cryocooler cold tip is dominated by the convective 
process in the vapor, and only over very long time scales 
impacts the temperature of the liquid mass.  Without heat 
transfer through the walls, the steady-state conditions for 
the 0.78 m characteristic length envisioned for Argonne’s 
liquid helium reservoir will require thousands of hours. 

 

    

 

 
Figure 6: Ansys CFX Vapor Temperature Profiles. 
 
Condenser Geometry 

Two condenser geometries, conical and hemispherical, 
were included in the analyses. The thermal resistance to 
heat transfer between the surface of the liquid helium 
reservoir and the condenser tip was found.  Table 1 lists 
the thermal resistance values for the baseline reservoir 
geometry and each of the condenser tips along with the 
condensed film resistance values determined with EES. 

MODELLING RESULTS 
Table 2 lists the approximate thermal resistance values 

for each individual heat transfer mechanism described in 
this paper.  The thermal path through the vessel wall 

provides a much smaller thermal resistance than the path 
through the vapor region and condenser tip. 

 

Table 2: Condenser Geometry Resistance Comparison 

Condition Thermal Resistance 

Rwall conduction ≈ 0.5 K/W 

Rconvection ≈ 20 K/W (Dominant) 

Rfilm conduction ≈ 0.1 K/W 

EXPERIMENTAL WORK 
An experimental apparatus is being assembled to verify 

the expected heat transfer characteristics from the model. 
The experimental work will investigate the time required 
for steady state conditions as a function of the associated 
length scales, and will measure the temperature profile 
throughout the system components.  The helium boil off 
rate will be found for different heat loads and condenser 
designs. 

 
Figure 7: Experimental Setup Schematic. 

CONCLUSIONS 
Modelling results reveal that the thermal resistance 

between the liquid surface in a helium reservoir and the 
recondenser cold tip can be extremely large and slow to 
equilibrate if the primary heat path is through the helium 
gas. Such a constraint can be significantly reduced by 
using enhanced conductive paths through the reservoir 
wall.  Reducing the characteristic length by using 
extended surfaces in the vapor region will also reduce the 
thermal resistance much more than by optimizing the 
geometry of a condenser surface.  
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