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Abstract 
The first spare cryomodule for the Spallation Neutron 

Source (SNS) has been designed, fabricated, and tested by 
SNS personnel. The approach to the engineering design 
for this cryomodule was to maintain critical features of 
the original design such as bayonet positions, coupler 
positions, cold mass assembly, and overall footprint. 
However, this new cryomodule design was required to 
meet the pressure requirements put forth in 10 CFR 851: 
Worker Safety and Health Program. The most significant 
engineering change was applying Section VIII of the 
ASME Boiler and Pressure Vessel Code to the vacuum 
vessel of this cryomodule instead of the traditional 
designs where the helium circuit is the pressure boundary. 
Applying the pressure code to the helium circuit within 
the cryomodule was considered. However, it was 
determined to be schedule prohibitive because it required 
a code case for the niobium materials which are not 
currently covered by the code. Good engineering practice 
however, was applied to the internal components to verify 
the quality and integrity of the entire cryomodule. The 
design of the cryomodule, fabrication effort, cryogenic 
and high power RF test results will be reported in this 
paper. 

INTRODUCTION 
The Spallation Neutron Source (SNS) contains a 

superconducting linear accelerator (SCL) which consists 
of eleven medium beta and twelve high beta cryomodules. 
The linac tunnel has nine additional slots for high beta 
cryomodules for expansion and upgrades. Throughout the 
operating history of the SNS SCL, several operating 
scenarios have indicated that there is a necessity for a 
spare medium and high beta cryomodule to allow for 
repairs of existing cryomodules and mitigate risk in the 
event of a cryomodule failure. Damage to components 
and degradation of performance have been observed in 
several cavities which have resulted in multiple 
cryomodules requiring repair and rework [1-2]. This has 
served as a driver for SNS to initiate the spare 
cryomodule fabrication effort.  

Because future expansions would consist of adding 
high beta cryomodules to the LINAC, the decision was 
made that the first spare cryomodule would be a high 
beta. This would enable the repair of any of the twelve 
high beta cryomodules and serve as a Power Upgrade 
Project prototype. This effort would not only serve to give 
SNS operating flexibility and reliability but enable SNS 
personnel to gain valuable experience prior to entering 
into an upgrade project.  

DESIGN CRITERIA 
The SNS LINAC houses twenty-three successfully 

operating cryomodules designed and fabricated by 
Jefferson Laboratory. When possible, SNS would 
reproduce the same design as previously used. However 
in 2007, the Department of Energy enacted 10CFR851, 
the Worker Safety and Health Program. This law 
contained a section on pressure safety and made specific 
references to the cryogenic and vacuum industries. All 
vessels that could be defined as a pressure vessel 
according to Section VIII of the ASME Boiler and 
Pressure Vessel Code (B&PV) would be required to have 
a code stamp, an independent peer review, or a 
professional engineer review. The result of the reviews 
would have to determine and certify that the vessel was as 
safe as or better than what would be required by the code. 
The SNS approach was to enact section VIII of the 
ASME code to avoid any ambiguity that may arise from a 
review process.   

To enact the code, two options were considered; 
applying the code to the vacuum vessel and applying the 
code to the helium vessel. The decision was made to 
define the vacuum vessel and end can envelope as the 
pressure boundary [3] due to the difficulty in applying the 
pressure code to the helium circuit materials. The 
niobium, titanium and niobium titanium alloy are not 
code listed at the operating temperature that is routinely 
maintained within the cryomodules. The approach to use 
the vacuum vessel as the pressure boundary made use of 
the interpretation of VIII-1-89-82 where it was deemed 
acceptable to stamp the exterior vessel of a heat 
exchanger if the tube side exceeded the rated operating 
pressure provided the shell and associated relief devices 
are designed to withstand the highest design pressure 
associated with the tube side. Moving the pressure 
boundary from the cavity helium circuit to the vacuum 
vessel has additional safety benefits. First, the vacuum 
shell material is 304 stainless steel which is one of the 
best materials for fracture toughness and ease of 
fabrication. Second, the vacuum shell will never reach the 
helium operating temperature even with a catastrophic 
failure of the helium lines due to the thermal mass of the 
vessel material which is at room temperature. Therefore 
the material properties at liquid nitrogen can be used.  
Third, the vacuum vessel envelope could be easily 
pressure tested without the SRF cavity string installed. 

DESIGN APPROACH 
To keep the cryomodule consistent with original 

cryomodules and make it a viable spare, several design 
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toughness in cryogenic applications and therefore filler 
material had a ferrite number below 5 [5].  

The design changes were successfully incorporated into 
the fabrication and pressure test of the SNS spare 
cryomodule (Fig.4).  

 

Figure 4: SNS spare high beta cryomodule. 

TESTING 
The first cryogenic and RF testing of the spare 

cryomodule took place in March 2012. The cryomodule 
was cooled down using the Central Helium Liquefier 4K 
Cold Box. Previously, this had only been accomplished 
during maintenance periods while the SNS 
Superconducting Linac was at 4K operation. This 
particular cool down was accomplished while operating 
the SCL at 2K. During the initial cool down of the 
transfer line to the test cave where the spare cryomodule 
testing takes place, there were multiple pressure spikes 
that communicated with the cold turbine discharge which 
required careful monitoring. Supercritical helium flowing 
to the liquid helium storage dewar was split with a portion 
going to the dewar JT valve and the other portion going to 
the test cave. The helium was supplied to the cryomodule 
primary path through a JT valve. The helium exited the 
primary return bayonet and was routed to the shield return 
bayonet where the helium flowed backwards through the 
shield passage which resulted in a shield operating 
temperature ranging between 6 and 12K. Helium was then 
routed back through the shield passage of the transfer line 
where it was directed to the purifier through an ambient 
heat exchanger. A diagram of the flow path is shown in 
Figure 5.  

 

Figure 5: Test Process Flow Diagram 

The cool down of the cryomodule was completed with 
no observed negative effects. There were no sign of leaks 
in the insulating vacuum or beam line vacuum 

boundaries. Although this operation was conducted with a 
unique flow path, operability of the system was controlled 
successfully. The shield passage varied from the normal 
shield operating temperature of 38K–50K. Despite the 
unusual flow path and shield operating temperature, 
helium liquid level and pressure were controlled within 
tolerance limits. By successfully conducting this cool 
down while the SNS SCL was at 2K operation, it enables 
more flexibility in conducting critical testing in the RF 
test cave when the risk is warranted.  

After cool down was complete and the cryomodule was 
filled with liquid helium, each cavity was RF tested 
individually. The cryomodule test results are summarized 
with the VTA test results in Table 1. For cavity HB54, the 
limiting gradient was increased by RF processing and 
reducing the effects of multipacting. The cavity RF results 
are consistent with the initial VTA results. The limiting 
condition of all 4 cavities is the partial quench at the end 
groups that is also the prevalent limiting condition of the 
cavities in the SCL. Because the radiation onset of the 
cavities is close to the limiting gradients, it is likely that 
collective effects [2] will be manageable which gives 
good confidence to this being a viable spare cryomodule. 
In the summer of 2012, the spare cryomodule is 
scheduled to be installed in the SNS LINAC tunnel. 

Table 1: Cavity RF Test Results 

 

ACKNOWLEDGMENT 
The authors would like to thank Mark Wiseman and 

John Hogan at Jefferson Laboratory for their engineering 
input on the design of this cryomodule. We would also 
like to thank the many SNS staff that participated in the 
design, review, fabrication, and testing of the spare 
cryomodule which made this a success. 

REFERENCES 
[1] Kim, S-H., “Superconducting Linac Operations and 

Performance” Presentation for SNS Accelerator 
Advisory Committee (2012) 

[2] Kim, S-H., “SNS Superconducting Linac Operating 
Experience and Upgrade Path”, LINAC’08, Victoria, 
Canada (2008) 

[3] Mammosser, J., “Spallation Neutron Source Status 
and Upgrade Plans”, SRF2009, Berlin, Germany 
(2009) 

[4] Spallation Neutron Source, “SNS Parameter List”, 
SNS-100000000-PL0001-R13, Oak Ridge (2005) 

[5] ASME Boiler and Pressure Vessel Code Section VIII 
Division 1 – 2010 UHA 51(a)(4)(a)(1) 

Purifier

4K Cold Box
Liquid
Helium
Dewar

Test Cryomodule

Cool
Down
Header

Thermal
Shield

Coupler Outer Conductor Cooling
Surge
Tank

JT
Valves He Vessels &

Nb Cavities

CM Heat Exchanger

LHe Dewar
JT Valve

CTF Supply
Transfer Line

Cavity Limiting gradient 
(MV/m)
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condition

Limiting gradient 
(MV/m)

HB54 14.0 12.0 End group 
quench 13.0

HB56 16.0 16.0 End group 
quench 17.5

HB58 17.5 16.0 End group 
quench 17.2

HB53 16.5 15.5 End group 
quench 17.6

Cryomodule test in the test cave
Average limiting gradient Elim,avg: 16.0 MV/m

Vertical test
Elim,avg:16.3 MV/m
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