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Abstract*† 
The following proposal illustrates a method to 

characterize the pressure sensitivity behavior of 
superconducting spoke cavities. This methodology relies 
on evaluating the variation of resonant frequency of a 
cavity by observing only the displacements at designed 
regions of the cavity. The proposed method permits a 
reduced computational burden and a systematic approach 
to achieve a minimum value of pressure sensitivity in a 
complex system of dressed cavity. This method has been 
used to characterize the superconducting spoke cavities 
type-1 (SSR1), under development for Project X, and to 
design the helium containment vessel in such way to 
reduce the pressure sensitivity value to zero.   

INTRODUCTION 
The cavity sensitivity to Helium pressure is an 

important parameter which must be taken in consideration 
during the design of a dressed cavity system. The pressure 
fluctuations in the Helium bath cause cavity detuning by 
elastic deformations and micro-oscillations of the cavity 
walls. Any small shift from the resonant frequency of the 
cavity requires significant increase in power to maintain 
the electromagnetic field constant and, at the same time, it 
produces phase errors that affect the beam. For a cavity on 
resonance, the electric and magnetic stored energies are 
equal. If a small perturbation is made on the cavity wall, 
this will generally produce an unbalance of the electric 
and magnetic energies, and the resonant frequency will 
shift to restore the balance. The Slatter perturbation 
theorem [1] describes the shift of the resonant frequency, 
when a small volume ∆ܸ is removed from the cavity of 
volume ܸ. From the theorem is understandable that the 
frequency increases if the magnetic field is large where 
the walls are pushed in, and it decreases if the electric is 
large there. This result is easier to remember if one 
identifies a decrease in the effective inductance where the 
magnetic field is large and an increase in the effective 
capacitance where the electric field large. 

 The traditional evaluation of ݂݀ ⁄݌݀  involves a series 
of electromagnetic and structural analyses that can be 
performed in parallel with multiphysics software, such as 
Comsol [2] or Ansys multiphysics [3]. The goal is to 
evaluate the resonant frequency of the cavity under two 
arbitrary pressure loads. In this way it is possible to 
calculate the df/dp as: 
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݌݂݀݀ = ଵ݂ − ଴݂݌  

Where:  
 ଵ݂, ଴݂ are the resonant frequency, respectively, after 

and before the application of the pressure 
fluctuation that deform the volume of the cavity; 

 ݌ is the pressure load applied to simulate the 
fluctuation of the helium bath.  

It is of great importance to have a sense of how this 
sensitivity is affected by the different shapes of the helium 
vessel. During the phases of mechanical design of the 
vessel, its design is typically changed several times for 
engineering purposes and the iteration process is reduced 
considerably if there is a methodology to optimize and to 
estimate quickly the behavior of the system, in terms of 
sensitivity of resonant frequency to the pressure. 

METHODOLOGY 
To describe the methodology let’s consider a simple 

case at first. 
 

Figure 1: Sketch of a cavity connected to a helium vessel 
(a) by two interfaces (b) where the directional 
displacements are probed to study the characterization. 

An RF cavity enclosed in a helium vessel with only 2 
areas of interface(ܨܱܦ = 2), Figure 1. 

The definition and identification of such interfaces 
(DOF) is of great importance for this methodology. The 
electromagnetic behavior of the RF cavity is probed in 
relation with the displacements at such interfaces.  

The goal is to be able to evaluate the electromagnetic 
behavior of the RF cavity by observing only the 
displacements at such interfaces. The latter can be done 
by simple structural analyses of the complete assembly 
(cavity and vessel) under the same pressure loads (݌) 
used to extract the characteristic equation. The structural 
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