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Abstract
In the effort to optimize brightness in synchrotron radia-

tion sources, questions arise as to the most desirable elec-
tron beam parameters given a particular insertion device.
With a detailed understanding of the distribution of emit-
ted photons, the electron beam profile can be effectively
matched. We have developed tools which, by way of the
Wigner distribution, compute the phase space of photons
radiated by an electron bunch. An explanation is provided
of the workings of the code itself with mention of impor-
tant algorithms that have been implemented. We demon-
strate via numerical examples the Wigner distributions of
the undulator radiation. In particular, it is shown that the
phase space of light differs appreciably from the Gaussian
distribution assumed in many analytical expressions and,
therefore, the more thorough approaches should be used
for computation of related quantities.

WIGNER DISTRIBUTION
The application of the Wigner distribution function

(WDF) to synchrotron radiation allows for phase space
analysis of the x-ray fields. For a theoretical workup of the
Wigner distribution function and its properties in this con-
text, see [1, 2]. It has been demonstrated that the Wigner
distribution, when properly normalized, gives the bright-
ness of the classical geometrical ray corresponding to each
point in phase space. Thus, the Wigner distribution and the
brightness are simultaneously defined
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where r is the transverse displacement θ is a vector of
two angles giving the direction of the geometical ray. I
is the average beam current , λ is the photon wavelength,
and < ... > denotes an ensemble average. Therefore, the
Wigner distribution is the Fourier transform of the averaged
autocorrelation-like function of the radiation fields (mutual
optical intensity). In this work our aim is to demonstrate
the numerical computation of the Wigner distribution.

Notice that the electric field here is scalar. In the case
of vectorial fields of arbitrary polarization, the Wigner def-
inition may be extended to form four separate distributions
which are a generalization of Stokes’ parameters. For com-
putational examples of light with non-linear polarization

∗Supported by the NSF Grant DMR-0807731

refer to [1]; here we limit our scope to linearly polarized
light in x-direction.

An important quality of the Wigner is that is remains
constant along phase space trajectories corresponding to
classical drifts and lenses. Therefore, the distribution may
be propagated via the simple matrix transformations from
classical phase space optics.

Notice that for a radiation field on a grid detector, the
Wigner distribution is a 4D quantity. While we have the
ability to compute the full distribution, working with such
an object numerically reaches limits of computer memory
and CPU speed very quickly. Instead, we project this dis-
tribution into 2D x− θx phase space on which we perform
the majority of our analysis.

NUMERICAL TOOLS
We have developed a suite of Matlab and C++ codes for

numerically computing and analyzing the synchrotron ra-
diation fields via the Wigner distribution function. In this
section we provide a summary of various scripts and their
roles in analysis.

Computing Radiation Fields
The first task in these evaluations is to produce a radi-

ation field which is to be analyzed. For undulator radia-
tion, the electron orbit is obtained using a symplectic inte-
grator, from which the radiation fields are computed using
well-known formulae. This program is written in C++ with
parallel computing support for improved speed over Mat-
lab (the language of choice for the rest of our scripts). A
2D rectangular grid detector is placed a distance z0 from
the center of the undulator. Its width and sampling rate
may also be specified by the user along with all parame-
ters necessary to specify the undulator itself. The ability to
specify planar or helical undulators as well as segmented
undulators separated by quadrupole magnets is included.
The code also contains the ability to specify an arbitrarily
defined magnetic field structure for more complex scenar-
ios (e.g. introduction of misalignments of the electron orbit
inside long segmented undulator).

As an alternative to synchrotron radiation fields, we
have also written scripts which compute well-known
Hermite-Gaussian and Laguerre-Gaussian laser modes,
e field gauss beam.m and e field lagauss beam.m.
These proved very useful for testing purposes allowing a
direct comparison of WDF with analytical expressions.

Once fields are obtained, optional elliptical apodizing
structures can be applied using aper.m. The ”smooth-
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Figure 1: Left: Spatial flux density of radiation field. Center: Brightness at artificial waist. Right: Brightness at true
waist. The flux density and 2D brightness are given in standard units: ph/(s 0.1%BW mm2) and ph/(s 0.1%BW mm mrad)
respectively.

ness” of these apertures may be modified, corresponding
to a gaussian mask as opposed to a hard-edged screen.

Phase Space Analysis
The remaining Matlab scripts focus on numerical com-

putation of the Wigner distribution and related quantities.
The continuous Fourier transform in Eq. 1 is replaced with
a discrete Fourier transform, and the computational chal-
lenge of the Wigner is reduced the finding the autocorre-
lation function. It is important that the grid spacing of the
detector is fine enough to avoid aliasing effects. wig2t.m
computes two dimensional θx−θy cross sections at a spec-
ified point (x0, y0). The full 4D distribution is accessible
via this function by finding 2D cross sections for each point
on the detector grid. As we have mentioned, this is seldom
a computationally feasible approach, so we favor comput-
ing 2D projected phase spaces using wig2x.m. The formu-
lae for 2D projected WDFs is given in [1].

Once the Wigner is found, we have the ability to
apply drifts and thin lenses to the distribution using
wigner drift.m and wigner lens.m. Again, these
transformations are the same simple transformations per-
formed on classical phase spaces. Drifts and lenses may
also be applied to the radiation field in principle, however,
this is a more complicated operation (we only apply a thin
lens to the field at one point in the Wigner computation us-
ing e field flatten phase.m to avoid aliasing for con-
venient grid sizes – this procedure is demonstrated in a nu-
merical example below).

The mutual optical intensity can be obtained either di-
rectly from the synchrotron radiation fields or via the
Wigner distribution by a Fourier transform. moi2.m finds
this quantity while cdc2.m computes the complex degree
of coherence, which is simply the normalized mutual opti-
cal intensity and the quantity directly related to the fringe
visibility in Young’s double-slit experiment.

The WDF may take on negative values, yet it can still
act as a quasi-probability distribution function when nor-
malized to 1. emit.m computes the sigma matrix, Σ, the
Twiss parameters and the emittance, ε, of this normalized
distribution. In an example below, we demonstrate how the
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Figure 2: Spatial flux density (top) and brightness (bottom)
of Htot = H3,0 + H4,0. The color maps are similar to
Figure 1

.

emittance and beta-function of synchrotron radiation differ
from commonly cited values.
A Brightness.m, A Brightness2D.m, A Flux.m, and

A SpatialFluxDensity.m compute the 4D peak bright-
ness, 2D peak brightness, integrated flux, and spatial flux
density as cited in well known analytical formulae [3].
Demonstration of agreement between analytical and nu-
merical computation of these quantities has been shown
in [1].

NUMERICAL EXAMPLES
Here we provide three examples of numerical analysis

performed using the aforementioned computational tools.
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Table 1: Undulator, Beam, and Radiation Parameters

Number of Periods Nu 250
Undulator Length λu 2 cm

Photon Energy Eph0 7.915 keV
Beam Energy E 5 GeV

Average Current I 100 mA
Detector Position z0 50 m

In the first example, we show the steps in comput-
ing the WDF for on resonance undulator radiation back-
propagated to the undulator center. First the radiation field
is computed using the parameters specified in Table 1.
After a certain drift to the detector (50 m in this case),
the radiation pattern is obtained on the rectangular grid.
The quadradic phase factor is removed from the field using
e field flatten phase.m, which is equivalent to apply-
ing a thin lens which ”flattens” the phase space and creates
an artificial waist. This helps to avoid aliasing problems
in WDF as mentioned previously. It is here that the phase
space is first be computed. Once the Wigner distribution
is obtained at the artificial waist, it is easy to remove the
phase-flattening lens using wigner lens.m and then back-
propagate the phase space to the undulator center, which is
also equivalent to 1:1 focusing of the undulator source. The
process is shown in Figure 1.

For the second example, we demonstrate the coherent
addition of two Hermite-Gaussian modes in phase space.
The superposition is an equally weighted sum of H3,0

and H4,0, where Hm,n is a Hermite-Gauss mode of or-
der m in x and order n in y. The H3,0 laser is offset with
(xini, θx,ini) = (0.25mm,−5µrad). The H4,0 laser is off-
set with (xini, θx,ini) = (−0.25mm, 5µrad) The radia-
tion field is then simplyHtot = H3,0 + H4,0. Figure 2
shows the radiation pattern at the detector and the phase
space at the waist. Notice the interference term that forms
from the coherent superposition of the radiation fields. It is
the disappearance of this term that leads to loss of coher-
ence in radiation.

As a final demonstration, we examine how the values of
the emittance and betatron function change with the flux
fraction. The radiation field is the same undulator radiation
pattern used for Example 1 (Table 1). The effect is shown
in Figure 3. For each point on the plot, an ellipse of fixed
area is fit over the phase space in such a way that the flux
contained inside the ellipse is maximized; all points outside
the ellipse are thrown away and the emittance and betatron
function are computed for the remaining points. From right
to left, the ellipse area decreases from an all-encompassing
ellipse to an ellipse of zero area. The horizontal dotted lines
show the commonly cited values for the betatron function,
β = Lu/2 and β = Lu/2π (Lu is the undulator length).
The emittance of undulator radiation is typically assumed
to be the diffraction limited value, ε = λ/4π. Not only
do the values of emittance and the betatron function differ
from commonly cited values for the entire radiation flux,
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Figure 3: Emittance and betatron function vs fraction.

but they also vary significantly with fraction. This analysis
suggests a much more careful handling of these values, es-
pecially for electron beam matching and undulator design.

ACCOUNTING FOR FINITE BUNCH
All analysis so far has been for a single electron, and

convolution to many electrons comes with some challenges
even though straightforward in every other aspect [1, 2].
The situation becomes particularly simple when offsetting
electrons in xini and θx,ini which does nothing but shift the
center of the Wigner distribution (the case of infinitely wide
in x planar undulator). However, spatial offsets in y may
change the effective K-parameter of the undulator due to
the cosh-like dependence of the magnetic field strength on
y [1]. This causes an effective resonance wavelength shift
of

λres − λres0 =
λuk

2

4γ2
(cosh2(

2π

λu
yini)− 1). (2)

which can be adjusted for in the case of small offsets.
λres is the new resonant wavelength, λres0 is the on axis
resonant wavelength, and λu is the undulator wavelength.
Large offsets in θy,ini must be treated even more care-
fully as the effective K-parameter varies along the electron
path. Other important effects arise from the nonzero energy
spread in the electron bunch, see [1].

In summary, the effort to analyze realistic sources us-
ing the Wigner distribution and phase space techniques has
only just begun. We expect that this method will grow in
importance with the advent of more coherent light sources.

REFERENCES
[1] Ivan V. Bazarov. Synchrotron radiation representation in

phase space. PRSTAB, 15:050703, May 2012.

[2] Kwang-Je Kim. Brightness, coherence and propagation char-
acteristics of synchrotron radiation. NIMA A, 246(1-3):71 –
76, 1986.

[3] Kwang-Je Kim. Characteristics of synchrotron radiation. AIP
Conf. Proc., 184(1):565–632, 1989.

Proceedings of IPAC2012, New Orleans, Louisiana, USA WEOBB03

02 Synchrotron Light Sources and FELs

T15 Undulators and Wigglers

ISBN 978-3-95450-115-1

2151 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


