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In a laser plasma accelerator, a laser pulse is propagated
through a plasma, creating a wake of regions with very
strong electric fields of alternating polarity [1]. An elec-
tron beam that is injected with the appropriate phase can
thus be accelerated to high energy in a distance that is much
shorter than with conventional acceleration techniques [2].
The simulation of a laser plasma acceleration stage from
first principles using the Particle-In-Cell technique in the
laboratory frame is very demanding computationally, as the
evolution of micron-scale laser oscillations needs to be fol-
lowed over millions of time steps as the laser pulse propa-
gates through a meter-long plasma for a 10 GeV stage.
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Figure 1: Simulations with the code Warp of scaled laser
plasma acceleration stages: (top) in the lab; (bottom) in
a Lorentz boosted frame (laser pulse in blue/red; plasma
wakefield in pale blue/yellow).

A method was recently demonstrated to speed up full
PIC simulations of a certain class of relativistic interactions
by performing the calculation in a Lorentz boosted frame
[3], taking advantage of the properties of space/time con-
traction and dilation of special relativity to render space and
time scales (that are separated by orders of magnitude in
the laboratory frame) commensurate in a Lorentz boosted
frame, resulting in far fewer computer operations. As il-
lustrated in Fig. 1, which shows snapshots from simula-
tions of a sample LPA stage, in the laboratory frame the
laser pulse is much shorter than the wake, whose wave-
length is also much shorter than the acceleration distance
(λlaser � λwake � λacceleration). In a Lorentz boosted
frame co-propagating with the laser at a speed near the
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speed of light, the laser is Lorentz expanded (by a fac-
tor (1 + vf/c)γf where γf = (1 − v2f/c

2)−1/2 and vf
is the velocity of the frame and c is the speed of light).
The plasma (now moving opposite to the incoming laser
at velocity −vf ) is Lorentz contracted (by a factor γf ).
In a boosted frame moving with the wake (γf ≈ γwake),
the laser wavelength, the wake and the acceleration length
are now commensurate (λlaser < λwake ≈ λacceleration),
leading to far fewer time steps by a factor (1 + vf/c)

2γ2f ,
hence computer operations [3, 4].

Recently, control of a violent numerical instability that
limited early attempts [5, 6, 7] was obtained via the com-
bination of: (i) the use of a tunable electromagnetic solver
and an efficient wideband digital filtering method [8], (ii)
observation of the benefits of hyperbolic rotation of space-
time on the laser spectrum in boosted frame simulations
[9], and (iii) identification of a special time step at which
the growth rate of the instability is greatly reduced [8].
A novel numerical method for injecting the laser pulse
through a moving planar antenna was also introduced [4].
The combination of these methods enabled the demonstra-
tion of a speedup of over a million times for the modeling
of a hypothetical 1 TeV stage, and over 10,000 for a 10
GeV stage [9].
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