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Abstract 
As a result of the changes in the new ILC base line, 

there are many changes in the positron source beamline 
layouts and thus a new lattice design is required. 
According to the changes in the ILC baseline, a new 
lattice design for the ILC positron source has been 
developed at ANL. In this paper, both the new ILC 
positron source beamline lattice and the corresponding 
start to end simulation results are presented. 

INTRODUCTION 
The helical undulator of ILC positron source used to be 

located near the middle of electron main linac where the 
main electron beam reaches 150GeV in energy[1] and 
starting from SB2009 baseline[2], it is now relocated at 
the end of electron main linac.  This relocation of positron 
source undulator has reduced the low energy transport 
line of positron source and also simplified the positron 
transport line.  The new 400MeV transport line is straight 
line less than 400m.  

Another change between the ILC RDR layout and new 
baseline layout that has impact to positron source 
beamline lattice is the change of damping designs.   

 

Figure 1: RDR layout (left) and the new baseline layout 
(right). 

As shown in Fig 1, the damping ring in the new 
baseline is half the size of RDR damping and has been 
moved to one side of IP.  Due to the change in 
geometrical layout, the PLTR beamline lattice also need 
to be redesigned to ensure the capture of positron beam.   
As part of start to end simulation, we also reported our 

simulation on the main electron beam properties as they 
passing through the ILC positron source undulator. 

THE EMITTANCE AND ENERGY 
SPREAD OF MAIN ELECTRON BEAM 
When electron beam passing though a helical 

undulator, electrons will lost energy into photon radiation 
and gama rays will be generated.  There exist both 
quantum excitation and damping effect as results of such 
photon generation process.  Our previous study for RDR 
undulator based positron source has shown that for RDR 
undulator and the nominal 150GeV drive electron beam, 
emittance damping effect is stronger than the quantum 
excitation effect and thus the emittance of 150GeV drive 
electron beam will be damping down as it passing though 
the RDR undulator[3]. 

Since the photon radiation spectra of a given helical 
undualtor is depended on the drive electron beam energy, 
the effect of the same undulator on different drive 
electron beam could be different and thus the impact of 
relocating the undulator to the end of electron main linac 
also need to be revisited. 

Table 1: Electron Beam Parameters 

CM Energy GeV 200 230 250 350 500 

Effective undulator length m 147 147 147 147 147 
Effective undulator field T 0.86 0.86 0.86 0.698 0.42 
undulator period length cm 1.15 1.15 1.15 1.15 1.15 
Electron energy loss in undulator 
(e+ prod.) GeV 3.0 3.0 3.0 

2.6 2.0 Electron energy loss in undulator 
(lumi prod.) GeV 1.3 1.8 2.1 
Rel. enery spread induced by 
und.(assumed initial 0.3%)  0.087 0.100 0.112 0.118 0.065 
Total energy spread (assumed 
0.3% initial)  0.312 0.316 0.320 0.322 0.307 
Rel. enery spread induced by 
und.(assumed initial 0.2%)  0.092 0.112 0.117 0.116 0.082 
Total energy spread (assumed 
0.2% initial)  0.220 0.229 0.232 0.231 0.216 
Rel. enery spread induced by 
und.(assumed initial 0.1%)  0.098 0.111 0.120 0.120 0.085 
Total energy spread (assumed 
0.1% initial)  0.140 0.149 0.156 0.156 0.132 
Rel. enery spread induced by 
und.(assumed initial 0%) % 0.098 0.113 0.123 0.122 0.084 
Emittance growth nm -0.4 -0.6 -0.7 -0.55 -0.31 

Shown in table 1 are the parameters of electron beams 
passed through the helical undulator for different CM 
scenarios.  As showing in the table, the emittance of 
electron beam for all CM scenarios are damping down as 
they passing though the undulator while the energy 
spreads are growing for electron beam of all CM 
scenarios.  

POSITRON SOURCE BEAMLINE 
LATTICE DESIGN 

As shown in figure 2, conceptual view of positron 
source, the new positron source beamline is consisted of 
Positron source Target Area and Pre-Accelerator 
(PTAPA), Positron CAPture section(PCAP), Positron 
Pre-Accelerator(PPA), Positron source low energy 

 ___________________________________________  
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transfer line(PTRAN), Positron 5GeV energy 
Booster(PBSTR), Positron 5GeV transfer line(PTRANH) 
and Positron Linac To Ring(PLTR.)   
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Figure 2: Conceptual layout of the positron source 
beamline. 

 
The PTAPA beamline is consisted of two standing 

wave linac and 3 travelling wave linac.  This section of 
beamline is responsible for accelerating the positron beam 
up to 125GeV.  The particle tracking of positron beam 
through this section is handled by PARMELA and the 
beamline never change for this section.  A typical 
longitudinal phase distribution of positron beam is given 
in Fig. 3. 

 

Figure 3: Typical longitudinal distribution at end of 
PTAPA. 
 

The positrons passing through the capture RF cavities 
are separated from electrons and photons in the dipole 
magnet at entrance into the PCAP section. The latter is an 
achromatic chicane optics which horizontally deflects the 
positron line by 1.5 m. It includes a set of collimators to 
scrape the positrons with large incoming angles and large 
energy errors.  As the energy spread of positron beam is 
big in this stage, one need to minimize both R56 and 
T566 of this section to minimize the longitudinal phase 
space dilution of the positron beam.  A typical 
longitudinal phase space distribution of positron is given 
in Fig. 4. 

 

Figure 4:  Longitudinal phase distribution of positron 
beam at the end of PCAP. 

Following the PCAP section, PPA is used to accelerate 
the positron beam up to 400MeV.  This beamline section 
is kept the same as in RDR. 

 

Figure 5:  Beta functions from end of PPA to end of 
PTRANH. 

A PTRAN beamline section of about 426m is then used 
to transport the 400MeV positron beam from PPA 
downstream to PBSTR, 5GeV positron energy booster 
beamline.  The FODO lattice for PTRAN is borrowed 
from RDR PTRAN beamline section.   

The new PBSTR lattice is now consisted with 6 4 
cavities 4 quads(4C4Q) cryomodules for energy from 400 
MeV up to ~1082.564MeV, 8 8 cavities 2 quads (8C2Q) 
cryomodules for beam energy up to ~2507 MeV, and 12 8 
cavities 1 quad (8C1Q) cryomodules for beam energy up 
to 5GeV.  The total length of this section including 
matching in and out is 372.56m.   

Following the PBSTR beamline, positron beam will 
pass through a 934.23m PTRANH transport line before it 
move down into PLTR beamline.  The beta functions of 
beamline from PTRAN to PTRANH beam line is given in 
Fig. 5. 

The PLTR system which extracts the positrons from the 
booster linac and injects them into the DR injection line 
has two main functions: one is to perform spin rotations; 
and the other to manipulate energy compression to meet 
the longitudinal DR acceptances.  
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