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Abstract 
The CLIC recombination scheme is a concept of 

multiplication of the drive beam frequency in order to 
generate a 12 GHz RF wave for the main beam 
acceleration. CLIC is designed to be operated at nominal 
energy and in low energy modes. The low energy 
operation modes require the train length to be increased 
by different factors in order to maintain the same level of 
luminosity. Also the number of initial trains that are 
merged to form each final train is changed. The 
combination scheme must be able to accommodate and 
recombine both long and short trains for nominal and low 
energy CLIC operation modes. The recombination hence 
becomes a non-trivial process and makes the correction of 
the errors in the drive beam more challenging. The 
present paper describes in detail the recombination 
process and its consequences.  

INTRODUCTION  
The Compact Linear Collider is a potential future linear 
e+e- collider, which is designed to provide acceleration 
with a gradient of ~100 MV/m. CLIC is supposed to be 
operated at 12 GHz frequency with 244 ns long RFpulses 
at nominal energy of 3 TeV [1]. Such pulses cannot be 
produced by any conventional RF source, but can be 
extracted from a high-current low energy beam called the 
drive beam. Drive beam can be accelerated by 
conventional klystrons at the frequency of 0.5 GHz, later 
drive beam buckets can be recombined in the so called 
CLIC drive beam recombination scheme. The buckets of 
the subsequent trains are repositioned longitudinally 
between each other, hence increasing the bunch frequency 
of the beam (see Fig. 1).  

 
Figure 1: CLIC drive beam combination principle. 

The frequency is increased by factor two in a delay line 
and by factors three and four in the two combiner rings, 
hence giving a drive beam at the final frequency of 12 
GHz.  

 
Figure 2: CLIC drive beam accelerator complex and 
recombination scheme. 

DIFFERENT ENERGY MODES  
Operating at lower energies is necessary to study the 

properties of the particles that are expected, or hoped to 
be discovered, at CLIC. Hence CLIC must allow the 
possibility of energy scans, which can be performed by 
reduction of the accelerating gradient. CLIC error 
tolerances require the bunch charge N to be reduced 
proportionally to the collision energy E, leading to a 
significant luminosity drop. In order to compensate for it, 
it is planned to increase the pulse length and the number 
of bunches per pulse nb. This pulse length increase can be 
performed for several stages of energy reduction, which 
defines the different energy operation modes [2].  

The baseline design implies the construction of four 
different delay lines for different energy modes. The 
combiner rings, in contrast, will be designed in order to 
be able to accommodate all possible pulse lengths in the 
same structure. The length of the combiner rings is 
292.8m for CR1 and 439.2m for CR2. 

NOMINAL 3 TeV OPERATION MODE 
At the nominal operation mode CLIC drive beam 

pulses with both even and odd buckets are 244 ns long.  
After the recombination of the buckets in the delay line, 
the beam consists of 244 ns long 1 GHz pulses and 244 ns 
long gaps (as shown in Fig. 1). CR1 will be filled with 
two pulses simultaneously, separated by two gaps (see 
Fig. 3). When next two pulses arrive, they will be 
combined with the ones circulating in the ring, up to the 
combination factor three. Afterwards, the pulses will be 
extracted from the combiner ring. 
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