
CREATION OF FELWI USING LARGE AMPLIFICATION REGIME

K. B. Oganesyan∗, Alikhanyan National Science Lab,
(formerly Yerevan Physics Institute), Yerevan, Armenia

M.V. Fedorov, A.I. Artemiev, General Physics Institute, Moscow, Russia
Yu.V. Rostovtsev, University of North Texas, Denton TX 76203, USA

G. Kurizki,Weizmann Institute of Science, Rehovot, Israel
M.O. Scully, Texas A & M University, Department of Physics, College Station, Texas, USA

Abstract

A threshold condition for amplification without inver-
sion in a Free-Electron Laser Without Inversion (FELWI)
is determined. This condition is found to be too severe for
the effect to be observed in an earlier suggested scheme be-
cause a threshold intensity of the field to be amplified ap-
pears to be too high. This indicates that alternative schemes
have to be found for making creation of FELWI realistic.

THRESHOLD FOR FELWI

According to the main idea of Ref. [1], a possibility of
FELWI realization is strongly related to a deviation of elec-
trons from their original direction of motion owing to inter-
action with the fields of undulator and co-propagating light
wave. The deviation angle appears to be proportional to en-
ergy gained or lost by an electron during its passage trough
the undulator. Owing to this, a subsequent regrouping of
electrons over angles provides regrouping over energies.
In principle, a proper installation of magnetic lenses and
turning magnets after the first undulator in FELWI can be
used in this case for making faster electrons running over
a longer trajectory than the slower ones [2]. This is the
negative-dispersion condition which is necessary for get-
ting amplification without inversion [3].

It’s clear that the described mechanism can work only if
the interaction-induced deviation of electrons (with a char-
acteristic angle α) is larger than the natural angular width
αbeam of the electron beam,

α > αbeam. (1)

As the energy gained/lost by electrons in the undulator and
the deviation angle are proportional to the field strength
amplitude of the light wave to be amplified, the condi-
tion (1) determines the threshold light intensity, only above
which amplification without inversion can become possi-
ble. This threshold intensity is estimated below.

In the non-collinear FEL the electron slow-motion phase
is defined as

ϕ = qz + �k · �r − ωt, (2)

where q = 2π/λ0 and λ0 is the undulator period, �k and ω
are the wave vector and frequency of the wave to be am-

plified,
∣
∣
∣�k
∣
∣
∣ = ω/c, �r = �r(t) is the electron position vector
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and z = z(t) is its projection on the undulator axis. Let the
initial electron velocity �v0 be directed along the undulator
axis 0z. Let the undulator magnetic field �H be directed
along the x-axis. Let the light wave vector �k be lying in
the (xz) plane under an angle θ to the z-axis. Let the elec-
tric field strength �ε of the wave to be amplified is directed
along the y-axis, as well as its vector potential �Awave and
the undulator vector potential �Aund, where

Awave =
cε0
ω

cos
(

�k · �r − ωt
)

, Aund =
H0

q
cos(qz), (3)

and ε0 and H0 are the amplitudes of the electric component
of the light field and of the undulator magnetic field. The
described geometry geometry corresponds to that consid-
ered in Ref. [1].

The slow motion phase (2) obeys the usual pendulum
equation

ϕ̈ = −a2 sinϕ, (4)

where

a =
ce
√
ε0H0

E0
; (5)

E0 ≡ γmc2 is the initial electron energy and γ is the rela-
tivistic factor. If L is the undulator length, the ratio L/c is
the time it takes for an electron to pass through the undula-
tor. The product of this time by the parameter a of Eq. (5)
is known [4] as the saturation parameter μ,

μ =
aL

c
=

eL
√
ε0H0

E0
. (6)

Amplification in FEL (with H0 = const) is efficient one
as long as μ ≤ 1. At μ > 1 the FEL gain G falls. The
condition μ ∼ 1 determines the saturation field ε0 sat and
intensity Isat. For example, at L = 3m, H0 = 104 Oe,
γ = 102 we have ε0 sat ∼ 1.2 × 104 V/cm and Isat ∼
2 × 105 W/cm2. In our further estimates of the FELWI
threshold filed and intensity we’ll have to keep in mind that
it’s hardly reasonable to consider fields stronger than the
saturation field ε0 sat.

The pendulum equation (4) has the first integral of mo-
tion (kinetic + potential energy of a pendulum = const).

ϕ̇2(t)

2
− a2 cos[ϕ(t)] = const. (7)
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Initial conditions to Eqs. (4) and/or (7) are given by

ϕ(0) = ϕ0, ϕ̇(0) = δ ≡ ω − ωres

2γ2
, (8)

where ϕ0 is an arbitrary initial phase, δ is the resonance
detuning, and ωres is the resonance frequency for non-
collinear FEL given by

ωres =
cq

1− v0
c cos θ

≈ 2γ2cq

1 + γ2θ2
(9)

with θ =
(
�̂k, 0z

)

.
In the case of a not too long undulator and sufficiently

small energy width of the electron beam a characteristic
value of the detuning is evaluated as |δ| ∼ 1/t ∼ c/L.

The rate of change of the electron energy is defined as
the work produced by the light field per unit time, and as
it’s well known [4], this rate is connected directly with the
second derivative of the slow-motion phase

dE

dt
=

E

2cq
ϕ̈ ≈ E0

2cq
ϕ̈. (10)

The last approximate expression is written down in the
approximation of a small change of the electron energy,
|E − E0| � E0. In this approximation Eq. (10) gives
the following expression for the total gained or lost energy
of a single electron after a passage trough the undulator

ΔE = E

(
L

c

)

− E0 ≈ E0

2cq

[

ϕ̇

(
L

c

)

− δ

]

. (11)

In the weak-field approximation (μ � 1) one can use
the iteration method with respect to the squared parameter
a of Eq. (5) for solving Eq. (7). The zero-order solution is
evident and very simple: ϕ̇(0) ≡ δ. In the first order in a2

one gets

ϕ̇(1) =
a2

δ
(cos(ϕ0 + δ · t)− cos(ϕ0)) ∼ a2L

c
=

μ2c

L
.

(12)
By substituting this expression into Eq. (11) we find the
first-order change of the electron energy

ΔE(1) =
E0

2cq
ϕ̇(1) ∼ E0

2cq

μ2c

L
= μ2E0

λ0

4πL
. (13)

Of course, both ϕ̇(1) and ΔE(1) turn zero being averaged
over an arbitrary initial phase ϕ0. But here we are inter-
ested in maximal achievable rather than mean values of
these quantities, and these maximal values are given just
by estimates of Eqs. (12) and (13).

In accordance with the results of Refs. [1], Eq. (14),
and [2], Eq. (13), a transverse velocity vx and and energy
ΔE acquired by an electron after a passage through the
undulator are directly proportional to each other

vx = c θ
ΔE

E0
, (14)

which gives in the first order the following estimate of the
electron deviation angle α:

α ≈ v
(1)
x

v0
≈ v

(1)
x

c
= θ

ΔE(1)

E0
∼ θ μ2 λ0

4πL
∼ μ2 d λ0

4πL2
,

(15)
where d is the electron beam diameter and we took θ ∼
d/L.

As said above, in the framework of a linear theory we
can consider only such fields at which μ ≤ 1. Moreover,
consideration of the case μ � 1 has no sense at all because
the corresponding fields are too strong and because satura-
tion makes the gain too small. For these reasons let us take
for estimates maximal value of the saturation parameter μ
compatible with the weak-field approximation, μ ∼ 1. Let
us take also λ0 = 3 cm, d = 0.3 cm, and L = 3 × 102 cm.
Then, we get from Eq. (15) the following estimate of the
electron deviation angle

α ∼ 10−6. (16)

CONCLUSIONS

At weaker fields and smaller values of the saturation pa-
rameter μ the deviation angle α is even smaller than that
given by Eq. (16). But even at μ = 1 the angle α is
very small. To make the estimate (16) compatible with the
condition of Eq. (1) one has to provide the natural elec-
tron beam angular divergence smaller than 10−6. Unfor-
tunately, such weakly diverging electron beams hardly ex-
ist. For example, the microtron accelerator in Yerevan pro-
duces a beam with about 3 or 4 orders of magnitude larger
angular divergence, and this can be a rather serious obstacle
for attempts of creating FELWI. Hence, creation of FELWI
requires invention of alternative schemes in which thresh-
old restrictions would be much weaker than in the consid-
ered one.

We find that an FELWI cannot operate under a weak-
amplification Thompson regime, for which the spatial am-
plification is small. Only a large-amplification regime,
should be used to build an FELWI. It can be either the
anomalous Thompson or the Raman regime of amplifica-
tion, using an electron beam with overdense current den-
sity.
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