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Abstract

In middle-energy 3rd generation synchrotron light

sources with small transverse emittance, higher harmonic

cavities (Landau cavities) are installed for bunch lengthen-

ing to increase the Touschek lifetime, and to provide Lan-

dau damping for beam stability [1]-[5]. In this contribu-

tion we study the effects of passive Landau cavities in the

NSLS-II storage ring for uniform fill-patterns with the OA-

SIS tracking code [6],[7]. In our simulations we use an

earlier set of parameters of the NSLS-II storage ring since

our main purpose is to illustrate the basic mechanism of

passive Landau cavity operations. It is on our agenda to

study the actual parameters of the ring and discuss the case

with non uniform fillings.

ACTIVE LANDAU CAVITY

Consider the rf voltage produced by the fundamental rf

cavity and by a m-harmonic cavity (Landau cavity)

V (τ) = Vrf [sin(ωrfτ +φs)+K sin(mωrfτ +φn]−
Us

e
,

To compensate for the synchrotron radiation energy loss

Table 1: NSLSII Parameters

Parameter Symbol Value Unit

Energy reference particle E0 3 GeV

Average current I0 500 mA

Number of bunches M 1300

Harmonic number h 1300

Circumference C 780.3 m

Bunch duration στ 12 ps

Energy spread σp 9.8×10
−4

Energy loss per turn Us 1172 KeV

Momentum compaction α 3.68×10
−4

Revolution frequency ω0 2π×0.384 MHz

Us, we require V (0) = 0. In addition, we require
∂V
∂τ

∣

∣

∣

τ=0
= ∂2V

∂τ2

∣

∣

∣

τ=0
= 0. These conditions lead to

V (τ) = Vrf [sin(ωrfτ + φs)− sinφs

− sinφs
m2

(

cosmωrfτ − 1
)

− cosφs
m

sinmωrfτ ]

In Fig.1 (top left) we show the phase space portrait with

only the main rf cavity (red line) and with a third-harmonic

Landau cavity (blue line) with parameters for the NSLS-II

storage ring (see Table1). The optimal conditions satisfied

by the voltage V (τ) induce a bunch lengthening without an

increase of the energy spread.

∗Work supported by DOE contract DE-AC02-98CH10886
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PASSIVE LANDAU CAVITY: GAUSSIAN

BUNCHES

For passive Landau cavity operations, the total voltage is

given by the sum of the voltage produced by the powered

main rf cavity and the voltage induced by the beam travers-

ing the Landau cavity. In the case of stationary Gaussian

bunches uniformly distributed around the ring for a narrow-

band resonator wake with frequency ωR, shunt impedance

Rs and quality factor Q, the total voltage reads (see Ap-

pendix A)

V (τ) = Vrf sin(ωrf +φs)+ ibRs cosψ cos(ψ +mωrfτ ).

where ib = 2I0e
− 1

2
(mωrfστ )

2

and the detuning angle ψ
satisfies

tanψ = 2Qδ, δ =
1

2

( ωR

mωrf

− mωrf

ωR

)

. (1)

Imposing the same conditions as for the active Landau cav-

ity (V (0) = V ′(0) = V ′′(0) = 0) we have to satisfy

Vrf sinφs = −ibRs cosψ
2 +

Us

e
,

Vrf cosφs = ibRsm cosψ sinψ,

Vrf sinφs = −m2ibRs cosψ
2,

which, solved for φs, ψ and Rs give

sinφs =
m2

m2 − 1

Us

eVrf
=

m2

m2 − 1

Us

sinφs0
,

tanψ = −m cotψ,

Rs =
Vrf sinφs
ibm2 cosψ2

.

The optimal parameters for passive Landau cavity opera-

tions of the NSLS-II storage ring according to Table1 are

thus

sinφs = 0.2637,

tanψ = 10.97 =⇒ ψ = 84.79◦,

Rs = 17.77MΩ.

where the detuning frequency of the Landau cavity ∆ω =
ωR − mωrf can be calculated from eq.1. According to

Table2, R2 = 1800MΩ is much bigger than Rs, so the

optimal conditions for Landau cavity operations can not

be met. Nevertheless, if we notice that ibRs cosψ =
1.61MV , roughly one third of Vrf = 5MV and choose

the detuning angle ψ to meet the condition ibR2 cosψ =
1.61MV it follows that the detuning frequency is ∆ω =
2π × 83.8kHz for Q2 = 108.
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Table 2: RF Parameters Main Cavity and Third-Harmonic (m=3) Landau Cavity

Parameter Symbol Value Unit

RF frequency main/Landau ωrf/mωrf 2π×500/1500 MHz

RF voltage main Vrf 5 MV

Shunt impedance main/Landau R1/R2 11.7/18000 MΩ
Quality factor main/Landau Q1/Q2 65000/108

Detuning main RF frequency ∆ω -2π×8.1 kHz
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Figure 1: Top left: longitudinal phase space portrait with (blue line) and without (red line) a third-harmonic active Landau

cavity. Top right: bunch lengthening vs number of turns for several values of the detuning angle ∆f of the Landau cavity.

Bottom left: the same as top right for the energy spread . Bottom right: longitudinal distribution for several values of ∆f
showing a doubled peaked structure for ∆f = 65kHz.

PASSIVE LANDAU CAVITY: NUMERICAL

SIMULATIONS

We discuss now self-consistent simulations of passive

Landau cavity effects with the OASIS tracking code. The

algorithm to calculate long range effects is briefly outlined

in Appendix B. A more detailed discussion can be found

in [6]. Since our calculation of the coupled-bunch interac-

tion requires an integration over the history of the beam,

it is very time consuming to simulate the Landau cavity

with Q2 = 108. We discuss here simulations with the

smaller value Q2 = 260000. In order to meet the require-

ments discussed at the end of the Section 2, we choose

R2 = 46.8MΩ. We plan to optimize our algorithm to dis-

cuss the case with Q2 = 108. In Fig. 1 (top right) we show

the bunch length as a function of the detuning frequency

∆f . The optimal bunch lengthening for uniform fillings

occurs for values of the detuning frequency in the range

from 70 to 75kHz, not far from the value predicted by the

calculation with stationary Gaussian bunches. For exam-

ple the bunch lengthening for ∆f = 72kHz is 50ps. For

smaller values of ∆f the energy spread begins to increase

as shown in Fig.1 (bottom left) and the longitudinal distri-

bution starts to show a doubled peaked structure, as shown

in Fig.1 (bottom right).

CONCLUSIONS

We studied passive Landau cavity effects induced by a

third harmonic rf cavity for uniform fillings. We simulated

numerically the detuning angle for optimal bunch length-

ening and found it to be in agreement with the analytical

theory for Gaussian bunches. For smaller values of the op-

timal detuning angle the phase space is populated around

two phase space points giving to the longitudinal distribu-

tion a doubled peaked structure. In the analysis to date we

did not study non uniform fillings and we did not include
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transients effects induced by the impedance of the funda-

mental rf cavity. We plan to perform these studies together

with the inclusion of a model to simulate the effects of a

feedback system.

APPENDIX A: PASSIVE LANDAU CAVITY

FOR STATIONARY GAUSSIAN BUNCHES

Consider the total voltage produced by stationary Gaus-

sian bunches uniformly distributed around the ring for a

narrow-band resonator wake

V (τ) =

∫ τ

−∞

dτ ′ρ(τ ′)
+∞
∑

k=−∞

W
(

k
T0
M

+ τ − τ ′
)

, (2)

where

W (τ) = 2αRse
−ατ

(

cos ω̄τ − α

ω̄
sin ω̄τ

)

(τ > 0),

ρ(τ) =
Q√
2πστ

e−
τ2

2στ ,

and α = ωR/2Q, and ω̄ =
√
ωR

2 − α2. The summation

over k has been extended to −∞ taking advantage of the

causality property of the wake function. From

W (τ)=
1

2π

∫ ∞

−∞

dωe−iωτZ ||(ω), ρ(τ)=

∫ ∞

−∞

dτeiωτ ρ̃(ω),

it follows

V (τ) =
Q

2π

∫ +∞

−∞

dωρ̃(ω)eiωτ

+∞
∑

k=−∞

e−iωk
T0

M Z ||(ω).

Using the following identity and changing integration vari-

able

+∞
∑

k=−∞

eikz = 2π

+∞
∑

p=−∞

δ(z − 2πp), y =
ωT0
M

, (3)

we have

V (τ) =
ω0M

2π

+∞
∑

p=−∞

ρ̃(pMω0)e
−ipMω0τZ ||(pMω0).

AssumingM = h (h = harmonic number) and the narrow-

band resonator impedance sharply peaked at ω = mωrf

(ωrf = hω0)

Z ||(ω) =
Rs

1 + iQ
(

ωR

ω
− ω

ωR

)

ω=mωrf
=

Rs

1 + i2Qδ
,

where δ =
1

2

( ωR

mωrf

− mωrf

ωR

)

, (4)

in the sum over p we keep only terms with p = −m,m

V (τ) =
ω0M

2π

(

ρ̃(−mωrf)e
imωrf τZ ||(mωrf )

+ρ̃(mωrf)e
−imωrf τZ ||(−mωrf)

)

=
ω0MQRs

π(1 + 4Q2δ2)
e−

1

2
ω2σ2

τ (cosmωrfτ − 2Qδ sinmωrf),

where we used ρ̃(ω) = Qe−
1

2
ω2σ2

τ . Using I0 =

ω0MQ/2π and defining ib = 2I0e
− 1

2
(mωστ )

2

, the result

can be cast in the form

V (τ) = ibRs cosψ cos(ψ +mωrfτ ), (5)

where tanψ = 2Qδ.

APPENDIX B: CALCULATION OF LONG

RANGE WAKEFIELD INTERACTION

We outline the algorithm for the self-consistent calcula-

tion of the long-range wakefield interaction. For simplicity,

we consider the case of one bunch interacting with the volt-

age V (τ) produced by the bunch itself after n turns. The

total voltage V (τ) from the previous k revolutions is there-

fore

V (τ) =

n
∑

k=−∞

∫ τ

−∞

dτ ′ρk(τ
′)W

[

(n− k)T0 + τ − τ ′
]

,

Assuming that the long-range wakefield is slowly varying

for τ ∈ [(n − k)T0 − 5στ , (n − k)T0 + 5στ ], k < n, and

using l = n− k we can calculate V (τ) by expanding W in

Taylor series at lT0

V (τ) =

+∞
∑

l=0

∫

dτ ′ρn−l(τ
′)
(

W
(

lT0)

+W ′
(

lT0
)

(τ − τ ′) +W ′′
(

lT0
) (τ − τ ′)2

2
+ · · ·

)

=

+∞
∑

l=0

[

W
(

lT0) +W ′
(

lT0
)

(τ − 〈τ〉n−l)

+ W ′′
(

lT0
) (τ2 − 2τ〈τ〉n−l + 〈τ2〉n−l)

2
+ · · ·

)

.

Thus the calculation of V (τ) at turn n can be done by stor-

ing the moments 〈τ〉k, 〈τ2〉k, · · · of the bunch over previ-

ous turns.

REFERENCES

[1] K.Y. Ng, “Physics of Intensity Dependent Beam Instabili-

ties”, Fermilab-FN-0713.

[2] A. Hofmann et.al., Proc. 11th International Conference on

High Energy Accelerators, Geneva, 1980.

[3] N. Towne, Proc. PAC99 (1999) 2828.

[4] J.M. Byrd et al., Phys Rev. ST-AB5, 092001 (2002).

[5] A. Blednykh et al., Proc. PAC05 (2005) 2544.

[6] G. Bassi, in preparation.

[7] G. Bassi et al., Paper TUPPP043, these proceedings.

Proceedings of IPAC2012, New Orleans, Louisiana, USA TUPPP042

02 Synchrotron Light Sources and FELs

A05 Synchrotron Radiation Facilities

ISBN 978-3-95450-115-1

1703 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


