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Motivated by top-off safety analysis, we consider the 
case of single dipole faults and study how large an error 
can be compensated by the closed orbit correction system 
before the beam is lost. 

INTRODUCTION 
In NSLS-II, existence of stored beam current will be 

interlocked in order to assure personal safety during top-
off injection. Therefore we need to understand how much
dipole field loss due to a shorted coil or power supply 
failure can be tolerated before the stored beam is lost. In 
this paper, we study beam energy change with dipole 
faults and discuss the impact of orbit correction on 
determining how large a dipole field error can be tolerated 
before the stored beam is lost.  

MODELING OF SHORTED DIPOLE 
A shorted coil inside a dipole can create a continuous 

kick all along the magnet. In the work reported in this 
paper, we model the extended dipole kick produced by the 
short using the numeric dipole model in the ELEGANT 
code with fractional strength error  [1]. Here 

 is the actual field value, and  the nominal value. This 
approach allows proper treatment of nonlinear elements –
sextupoles.  

BEAM ENERGY AND CORRECTOR 
MAGNET 

A thin horizontal kick on the beam at position 
creates  orbit distortion is given by 

. (1) 
Here all notations are commonly used in all accelerator 
literatures. The kick can change closed orbit path-length, 
therefore the beam energy is changed because the RF 
frequency is fixed. Wenninger [2] studied the influence of 
such kick on the beam energy for the LEP ring by using 
simple models as well as simulations with the MAD 
program. He found an interesting phenomenon: the 
energy shift due to the second-order orbit lengthening is 
almost perfectly compensated by the sextupoles when 
chromaticity has been corrected to zero at LEP. In his 
paper [2], Wenninger didn’t explain this observed 
compensation. In the following, we will explain the 
reason for this compensation. 

The path-lengthening  (up to 2nd order) can be 
expressed as [2] 

Here  is the closed orbit offset and  the dipole radius. 
The 1st order contribution can be expressed in terms of the 
dispersion function 

Which means the beam energy deviates linearly with the 
kick strength if the kick is located in the non-dispersion 
region. Here  is dispersion function. 

Next we calculate the 2nd order contribution. Let’s start
by neglecting the effect of the sextupoles and use Hill’s
equation with a thin-lens kick at 

. 
Consider the derivative of the quantity 

Integrating this equation around the whole ring and 
applying the boundary condition Δ at , we 
get 

which implies

The path-length change due to the orbit off-set inside 
sextupoles is 

 is the normalized sextupole strength. The phenomenon 
of perfect compensation observed by Wenninger will 
occur if 

If the sextupole strengths are adjusted to achieve zero 
chromaticity, the above equation will hold if  is 
proportion to . Since the closed orbit depends not 
only on the beta-function, but also on the betatron phase, 
the compensation won’t be accurate unless 

The LEP ring is large and has a lattice structure such that 
the above relation is well satisfied. We have also checked 
the NSLS-II lattice, which is also sufficient big, such that 
this relation holds quite well. But for a small ring, such as 
the NSLS-VUV ring, the compensation isn’t so perfect 
(see Figure 1). 

If the kick is located at non-zero dispersion section, 
beam energy change is proportional to the dispersion 
function and kicker strength. The energy change plays 
important role in determining the existence of stored 
beam because beam tunes change with it. Stored beam 
may be lost due to large tune change. In the next section 
we will study beam energy change with gradual field loss 
of a single dipole in the cases of w/o automatic closed 
orbit correction. 

_____________________  
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Figure 1: Beam energy changes with a horizontal kick in
dispersion-free region. In NSLS-II ring (left) the 
cancelation is quite accurate (see blue curve), but for the 
small NSLS-VUV ring (right), the cancelation not so 
perfect (blue curve). 

EXISTENCE OF STORED BEAM WITH 
SHORTED DIPOLE 

The kick from a dipole short is always located in a non-
zero dispersion region; therefore beam energy change is 
proportional to the kick strength and the dispersion 
function at the kick’s location. A simulation using the 
ELEGANT code [2] was carried out to study the 
correlation between the strength of the dipole field error 
and beam loss in the NSLS-II ring. In our analysis, we
changed the field in a single dipole gradually to simulate 
a continuous field drop-off from a shorted coil. Here we
discuss two scenarios: with and without automatic closed 
orbit correction: 

Since RF frequency constrains the path-length of the 
closed orbit to remain constant, the beam must change its 
average radial orbit to compensate this path lengthening 
by changing its energy. The new closed orbit with a single 
shorted dipole has two contributions: an orbit distortion 
due to the kick given by Eq. 1, and a dispersive orbit due 
to energy change. Tunes can be shifted by (1) linear or 
nonlinear chromaticities, and (2) orbit displacement at the 
sextupoles. As the example shown in Figure 2 
demonstrates stored beam is lost when the horizontal tune 
approaches a half integer with the reducing dipole field 
strength. Figure 3 illustrates the beam energy changes 
during this process.

Figure 2: Beam tune-shifts with a single dipole field loss 
without orbit correction. 

Figure 3: Beam energy change with a single dipole field 
loss without orbit correction. 

Initially closed orbit distortion will be corrected 
automatically in modern storage rings. SVD algorithm is 
widely adopted to minimize corrector strengths. As we 
mentioned before, the closed orbit with a single shorted 
dipole is composed of a dispersive orbit and a distortion 
given by Eq. 1. An orbit correction system doesn’t 
distinguish between these two contributions and tries to 
correct them together. Simulation shows that, after some 
iteration, corrected orbit is composed of a closed bump to 
compensate the shorted dipole and a dispersive orbit due 
to beam energy change (Figure 4). The correction of 
dispersive orbit inside sextupoles will thwart the
cancellation of linear chromaticities by sextupoles (Figure 
5). This, in turn, drives tunes to drift significantly even 
with small beam energy offset. Simulation with the 
ELEGANT code shows tune-shift increases exponentially 
with the dipole field loss if automatic orbit correction 
system is switched on (Figure 6). Therefore, orbit 
feedback without considering beam energy change does 
not act to maintain the beam but can actually accelerate 
its loss at smaller dipole field error.
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Figure 4: Closed bump to compensate the shorted dipole 
and dispersive orbit due to beam energy change. 

 
Figure 5: The correction of dispersive orbit inside 
sextupoles thwarts the cancellation of linear 
chromaticities by sextupoles. 
 

The rapid increase of tune-shift stops once corrector 
strengths are saturated. All corrector magnets are 
designed and manufactured with a limit (0.8mrad in the 
NSLS-II ring). If a corrector’s set-point is larger than the 
limit, it can’t be set properly. Therefore, if any corrector 
reaches its limit, the local bump to compensate the 
shorted dipole is no longer closed (Figure 7). Beam 
energy offset will stop increasing suddenly because 
second-order orbit lengthening stops (Figure 6). In this 
case, stored beam will eventually be lost somewhere for 
the reason that tunes approach some resonance lines or a 
stable optic solution no longer exists. 

SUMMARY 
By studying the beam energy change with a thin kick, 

we provide a simple analytic explanation of why the 
second-order orbit lengthening is almost perfectly 
compensated by the sextupoles set for zero chromaticity 
in large rings. Carrying out an ELEGANT simulation 
study, we investigated the mechanisms responsible for 
dipole field errors to result in beam loss.  We have found 
that the automatic orbit correction system without 

considering beam energy change often doesn’t help 
maintain stored beam. This is because beam energy 
change is increased due to interference of orbit correction. 
 

 
Figure 6: Beam energy change with orbit correction to 
compensate a shorted dipole. Beam energy change stops 
once corrector magnets are saturated. 
 

 
Figure 7: Closed orbit loses the pattern of dispersion 
function after some correctors are saturated. 
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