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Abstract

For a complex accelerator such as the Facility for Rare
Isotope Beams (FRIB), a transfer matrix based online
model might not be sufficient for the entire machine. On
the other hand, if introducing another modelling tool,
physics applications using modelling tools have to be
rewritten. A platform that can host multiple modelling
tools would be ideal for such scenario. Furthermore, the
model platform along with infrastructure support can be
used not only for online applications but also for offline
purposes, for example multi-particle tracking simulation.
In order to achieve such a platform, a set of common
physics data structures has to be set. XAL's accelerator
hierarchy based data structure is a good choice as the
common structure for various models.  Application
Programming Interface (API) for physics applications
should also be defined within a model data provider. A
preliminary platform design and prototype is discussed.

INTRODUCTION

For modern accelerators, online model is necessary for
beam control and physics studies. The XAL [1] online
model is not sufficient for many physics problems and the
runs are not in near real time. There are many other
simulation codes for accelerator modelling. Each one has
some strength but not all. To utilize their strength, an
approach is to provide a platform to host multiple
modelling tools. In order to achieve such a platform, a set
of common physics data structure has to be set.
Application Programming Interface (API) for physics
applications should also be defined within a model data
provider. On the other hand, the software infrastructure
for such model platform should be robust. To make such
platform useful for beam control, the performance should
also be greatly improved for many beam dynamics codes.

OVERVIEW

The model codes are the engine for beam computation.
A supporting infrastructure, which prepares model input
parameters, sets up a model run and packages model run
result, is called Model Server [2]. The Model Server then
serves up model data via a commonly used
communication protocol to its client applications. In this
paper, a set of client applications for the model service is
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also identified.

Model platform is capable of running some predefined
model codes. Model server should contain the following
parts:

Model Data Structure

It is necessary to define a common data structure as an
interface between various modelling tools and physics
applications. = The XAL data structure provides a
hierarchical view of an accelerator which can be the
common format for model input data. Model output data
from various modelling tools is saved in relational
database (RDB).

Model Data adaptor

Each specific code needs a conversion between the
common data structure and its own format for both model
input and output. For most modelling results, it is not
difficult to write a parser, e.g. a Matlab script was written
to parse IMPACT model result [3].

Model Data Storage

Modern RDB is a good choice for model data storage
for its efficiency and maintainability. Furthermore, RDB
provides functions such as searching and sorting which
can be useful for offline analysis.

Model Data for Client Applications

For typical access to the model data in RDB, it is more
efficient to define intuitive API methods such as
getTwissForElement(“The_Element”). For performance
or management reasons, a computer server with proper
protocols is configured to fulfil any client applications’
model data needs. The data access API and the database
schema should be matched as close as possible;
otherwise, it may cause inefficient or unnecessarily
complicated queries.
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Figure 1: Model Platform schematic diagram.
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Model Platform

Fig. 1 is a schematic design for the Model Platform.
Both offline and online model data are saved in a RDB.
XAL provides the hook to control systems and fitted
empirical machine model via XAL’s data structure and
API. A model control program with adapter to a specific
third party modelling code can prepare and initiate a
model run for that modelling code. In addition to the data
structure and API, XAL also provide an envelope based
online model. On the other hand, offline code can also
port its model output data back to the control systems
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through provided XAL API. An optimizer library with
modelling code can provide beam optimization. The
optimizer library should be general enough and residing
outside XAL so non-XAL programs can take advantage of
the optimizer.

In the model platform design, database is the central
piece of the architecture; any clients using model data will
only communicate with the database instead of any
specific modelling code. Details of the essential model
platform components are described in the next section.
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Figure 2: Database schema for storing model related data.

MODEL PLATFORM COMPONENTS

The most important components for the Model
Platform are RDB, data access service and client
applications.
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Database

A model database design is based on a new version of
Integrated Relational Model of Installed Systems (IRMIS)
and the model database from the Linac Coherent Light
Source (LCLS).

05 Beam Dynamics and Electromagnetic Fields

D01 Beam Optics - Lattices, Correction Schemes, Transport



Proceedings of IPAC2012, New Orleans, Louisiana, USA

The database schema shown in Fig. 2 is designed to
accommodate various model data for a wide range of
accelerators. There are thirteen tables in this schema:

e Element — basic information such as name, length
and location for a model element.

e Element align — alignment data for the element.

e Element install — installation information for the
element.

e Element prop — properties for the element.

e Element type — the element type.

e Element_type prop templt — a template to enter
properties for a model element type.

e Gold — a table to track default models.

e Lattice — general information for a given lattice.

e Model — general information for a given model.

e Model geometry — description for a specific
modelling geometry.

e Model line - the
calculation.

e Model mode — any uniquely predefined mode.

e Twiss — model run result data such as beta function,
emittance and many other physics parameters.

Model Service

Model Service provides real-time model data as well as
model run control such as run submission, status
monitoring and aborting model runs. A new EPICS
version (EPICS V4) [4] is under development for
supporting complicated data structures such as physics
model data. Another advantage of choosing the EPICS
V4 for model data is that it is the same communication
protocol for future control systems. Since the new
protocol is still under development, a prototype model
data service was tested with Java Persistent API (JPA)
and Glassfish Web Service. A preliminary set of data
access APIs has been defined. Client applications will
call these APIs to get model data seamlessly from RDB,
Model Service memory, or model run Meta data from file
system.

beamline for the model

Class Variable/Methad Data Type Arguments Return public

Device
Device() Y
DEVICE_ID int N
DEVICE_NAME String N
TYPE String N
POS double N
getiD() string A
getType() String Y
getPos() double Y

Element
Element() Y
ELEMENT_ID int N
ELEMENT_NAME String N
ALPHA X double N
BETA_X double N

double
double

getAlphax()
getBetax()
putAlphaX(ALPHA_X)
putBetaX(BETA_X)

double ALPHA_X
double BETA_X

< < =< =<

Model

getAllElements()

Figure 3: Sample APIs for Model Service.
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Fig. 3 shows a small portion of Model Service APIs.
So far we have defined only a set of very basic Model
Service APIs.

Client Applications

Client applications use the same APIs to access model
data produced by different modelling codes. Because the
client programming will be model code independent, it is
possible to have typical model applications such as orbit
correction as modules for different accelerator facilities.

OFFLINE MODELLING SUPPORT

The Model and Lattice subschemas in the Global DB
can handle not only to online model data but also
offline data. With proper data access services and API,
any modelling tool can take advantage of this model
data storage. For applications developed to display or
manipulate database stored model data, physicists can
use them for both online and offline purposes.

One research project is to develop a good multi-
particle tracking program and store the data in the

database. Furthermore, a study for using Graphics
Processing Unit (GPU) as parallel clusters is
underway.
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