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Abstract
The usual practice of constructing quadrupoles from

truncated cylindrical hyperbolae is put into question. A
new shape is proposed. This shape has an analytic potential
function. The exact shape of the analytic quadrupole may
be impractical, but in the short case where aspect ratio≈ 1,
pole shapes can be spherical. The optimal spherical radius
is found to be 1.65 times the aperture radius. In the long
quad limit, the aberrations of order 5 and higher are much
lower for the optimized shape.

INTRODUCTION
The multipole elements commonly used to control

charged particle beams correspond to solution terms of the
Laplace equation ∇2V = 0, namely, in polar coordinates
(r, θ), rn cosnθ in the system where the potential on axis
is zero. Thus n = 2 for a quadrupole, 3 for a sextupole,
etc. This implicitly assumes the elements are infinitely
extended in the axial (z) direction, and of course in real
beamlines, they are not. For n = 2, the intended linear
dependence of the fields upon transverse coordinate is thus
broken by the finiteness of the quadrupole. This results in
nonlinear force terms and aberrations.

It is not obvious how to terminate the poles of a
quadrupole. Often, they are simply truncated. Does the
shape in the longitudinal direction matter? And if so,
what shape is optimal? For very long quadrupoles, it can
be argued that hyperbolic equipotential surfaces given by
r2 cos 2θ = constant are optimal. However, this is only
true sufficiently far from the ends; for quadrupoles whose
length is comparable to or shorter than the aperture, the 2-
D hyperbolic shape is clearly not optimal. What then is the
optimal shape of quadrupoles in the short limit? What is
the optimal shape in the long limit? Answering these ques-
tions is the subject of this paper.

Hardness of the Fringe Field
Let the strength function of the quadrupole be k(z).

Rigourously, this means ∂xxV = −∂yyV = k(z) along
the axis x = y = 0, so that

V (x, y, z)→ k(z)

2
(x2 − y2) as (x, y)→ (0, 0) (1)

In the “hard-edge” limit, k is a step function. But using
a discontinuous step function instead of an analytic func-
tion to calculate the optics leads to dramatically incorrect
results. It is thus regrettable that almost all the major higher
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order optics codes allow calculation of third order optics in
the “no fringe field” case. This case is unphysical because
it brings a particle from the field-free region outside the
quadrupole instantaneously into the region where k 6= 0
without traversing intermediate fields. For example, for
electrostatic quadrupoles, this violates conservation of en-
ergy as the potential energy is thereby incremented without
changing the kinetic energy (in magnetic quadrupoles, an-
gular momentum conservation is violated).

Once the neophyte beamline designer has learned that
the third order aberrations calculated without fringe fields
are incorrect, he/she is still left with the impression that
the fringe field is at fault and customizing it in some way
will improve the third order optics. Further, of quadrupoles
with the same effective length, those with short fringe fields
are erroneously thought to be superior even though this
often means they have smaller aperture. In fact, such
quadrupoles are inferior, as their fifth and higher order
aberrations are worse.

Simplified Fringe Fields
We are thus drawn towards fringe fields that are “soft”

as opposed to “hard”. In this limit, in the case of short
quadrupoles, we dispense with the idealized 2-D hyper-
bolic shape, as there is anyway no region of the quadrupole
that is sufficiently far from the fringe field. In other words,
the quadrupole has no flat area where k(z) = k0, a con-
stant.

A common calculational technique is to fit the fringe
field to a so-called Enge function[4]:

kf(z) ≡
k0

1 + exp
[∑N−1

m=0 am
(−z
D

)m] (2)

where D is the aperture diameter. Generally one uses up to
N = 6 coefficients. This function has the advantages that it
is analytic, and tends realistically (exponentially) to asymp-
totic values. On the other hand, the Enge coefficients am
are not directly related to any physical parameter. For ex-
ample, varying any one of the am changes the quadrupole’s
effective length. Further, the hardness of the fringe field is
not given by a single parameter but rather by a combina-
tion of all 6. This makes it difficult for a designer to learn
for example that the third order aberration is insensitive to
fringe field hardness.

A useful approximation is to set all Enge coefficients ex-
cept a1 to zero[2]. In that case, varying a1 changes fringe
field hardness without shifting the effective field boundary.
The edge function becomes:

kf(z) ≡
k0

1 + exp
(−a1z

D

) =
k0
2

[
1 + tanh

(a1z
2D

)]
(3)
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To simplify notation, let us measure z in units of 2D/a1
(effectively, the fringe field thickness). In this way, we can
write the strength function of a full quadrupole of effective
length L as

k(z) = kf(z)− kf(z −L) =
k0
2

[tanh(z)− tanh(z − L)]
(4)

Comparing quadrupoles of differing lengths, we wish the
integrated strength K =

∫
kdz = k0L to remain constant,

so write k as:

k(z) =
K

2L
[tanh(z)− tanh(z − L)] (5)

In the short limit, we have simply that k is the derivative of
tanh:

k(z) =
K

2
sech2z (6)

PROPERTIES OF THE SECH-SQUARED
QUAD

From this strength function, we can derive the potential
V for all of space using the technique of analytic continua-
tion given by Derevjankin[3]:

V (x, y, z) = −<
{∫ z+ix

z+iy

dt

∫ t

0

k(ζ)dζ

}
(7)

We find:

V =
K

2
<{− log[cos(x− iz)] + log[cos(y − iz)]} (8)

See Fig. 1 where equipotential contours are plotted using as
scaling potential V0 ≡ V (π4 , 0, 0) =

K
4 log 2. The proper-

ties of V are perhaps more readily apparent if it is written
in real form:

V (x, y, z) =
K

4
log

cos2 y cosh2 z + sin2 y sinh2 z

cos2 x cosh2 z + sin2 x sinh2 z
(9)

From the symmetry and Laplace’s equation, it can be
shown that the following expansion holds:

V (x, y, z) = (10)

=
k

2
(x2 − y2)− k′′

24
(x4 − y4) + k′′′′

720
(x6 − y6)− ...

Taking derivatives to find the fields, and integrating for con-
stant x, y, we see that in spite of V being nonlinear with
x, y, the integral of quad strength is linear for any choice of
k(z).

The potential V of the sech2 quadrupole is periodic with
period π in the x and y directions. At large z, the cancel-
lation of this grid of alternating sign potentials ensures the
rapid exponential falloff of the field. This is somewhat re-
alistic. In the case of electrostatic quadrupoles, the ground
planes dashed in Fig. 1 can be thought of as some approxi-
mation of the beam pipe. In magnetic quadrupoles the yoke
takes the place of the ground surfaces.

Figure 1: Equipotentials of eqn. 8. Upper: in z = 0
plane, contours V = 4V0 (blue),V = V0 (purple),V = V0

4

(beige),V = V0

16 (green), V = −V0

16 (blue), V = −V0

4 (pur-
ple), V = −V0 (beige), V = −4V0 (green). Lower: in
y = 0 plane, contours V = 4V0 (blue), V = V0 (purple),
V = V0

4 (beige), V = V0

16 (green).

Four choices of equipotential surfaces are shown in
Fig. 2, oriented so that the quadrupole axis is vertical.
Note the top left case is most like a long conventional
quadrupole; the most significant difference being that the
inside diameter varies along its length, as indicated by the
V = ±V0

16 curves in the plot of Fig. 1. The lower right
case in Fig. 2 would not give the correct fields without the
4 ground planes as the boundaries given by the 4 slender
rods alone are insufficient. But the longer quadrupole (up-
per left in Fig. 2) case would work quite accurately without
the ground planes.

As will be shown, this design has smaller aberrations
than conventional designs, i.e. poles having constant xy
cross section, truncated at each end. The only disadvan-
tage is that the shape is rather more difficult to fabricate,
having curvature on all directions.

POLE SHAPES
Short Limit

In the lower left of Fig. 2 (where the surfaces are strik-
ingly similar in shape to four American regulation foot-
balls) the potential of the shown surfaces is ±V0 and the
curvature of the pole in the longitudinal direction is the
same as in the transverse direction. This is an attractive
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Figure 2: The coloured surfaces are 4 sets of equipotential
surfaces of the potential (8). The quadrupole axis is verti-
cal. In each case, the sides of the “box” containing the axes
are also the 4 ground planes. All 4 give identical fields and
the same sech2 on-axis strength function if they are given
the following potentials (left to right, top and then bottom),
±V0/16,±V0/4,±V0,±4V0 (adjacent surfaces have oppo-
site sign).

feature because it allows as a good approximation for the
pole to be symmetric along its axis, terminating in a spher-
ical shape. At the normalized aperture radius x = π/4, we
find the curvatures are equal and both equal 1. Or, in other
words, the curvature of the pole-tip is to be

pole-tip curvature =
4

π
(aperture radius). (11)

This (4/π) is substantially different from the ratio of 1.145
used for quadrupoles whose poles are circular in cross sec-
tion across the axis. The latter is derived by reducing the
12-pole (duodecapole) to zero for the 2D case (infinitely
long quadrupoles).

As the xy cross section is nearly hyperbolic, while the
xz cross section is nearly a circle, it is clear that choosing a
hyperboloid of revolution as shape is no better than choos-
ing a spherical shape. The latter has the advantage that it is
simpler to specify to the machinist.

The shape used for practicality, namely cylindrical
poles terminating in a spherical pole-face, omits impor-
tant parts of the “football”. This will have two effects:
the quadrupole strength function k(z) will not precisely
follow a sech2 law, and there will be some integrated 12-
pole. The former is of little consequence, but the latter can
cause aberration. However, just as with the case of the 2D

quadrupole, we can alter the radius of curvature of the pole
face to compensate the 12-pole. (20-pole and higher are not
of course compensated in this technique but made slightly
worse.)

In order to find the curvature radius that zeroes out the
integrated 12-pole, Laplace’s equation was solved for a 3D
boundary model, using a uniform rectangular mesh in xyz
of 100× 100× 300 increments for 1/16 of the quadrupole.
The 12-pole integrated strength was found from a polyno-
mial fit. The speed of convergence of the relaxation cal-
culation was markedly increased when initialized with the
function eqn. 8.

The result found is that the radius of curvature in units
of the aperture radius is 1.65± 0.05:

spherical pole-tip radius = 1.65 × (aperture radius).
(12)

The uncertainty arises from the grid coarseness and also
from the variation due to surfaces “behind” the pole; sur-
faces which the engineer would be free to optimize for
practicality. The potential on these surfaces also de-
pends upon the insulator design in the case of electrostatic
quadrupoles and the coil layout in the magnetic case.

Longer Quads
In principle, sech2 quads can be built to any aspect ra-

tio. Consider the equipotentials in the upper left of Fig. 2.
The distinguishing feature would be that the aperture varies
continuously along the axis, flaring out from a minimum at
centre. What would be the advantage of such a compli-
cation compared with quads of constant aperture? It can
be shown that quadrupoles of equal integrated strength and
equal integrated strength-squared, will have equal third or-
der aberration. However, for fifth and higher order, the
sech2 quadrupole has dramatically lower aberration than
the conventional quad. An example is given and aberra-
tions explored in a longer report[1].
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