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Abstract
Transverse beam diffusion for the Tevatron machine has

been calculated using the Lifetrac code. The following

effects were included: random noise (representing resid-

ual gas scattering, voltage noise in the accelerating cavi-

ties) lattice nonlinearities and beam-beam interactions. The

time evolution of particle distributions with different initial

amplitudes in Hamiltonian action has been simulated for 6

million turns, corresponding to a time of about 2 minutes.

For each particle distribution, several cases have been con-

sidered: a single beam in storage ring mode, the collider

case and the effects of a hollow electron beam collimator.

INTRODUCTION
The aim of this work is to evaluate the diffusion coeffi-

cient for the tevatron antiproton beam with the use of the

tracking code Lifetrac [1], and compare it with the exper-

imental results. The diffusion equation, introduced in the

first section, is the foundation for the analysis of both the

experimental data [2] and the simulation data. The limita-

tions of this approach are investigated, and the diffusion co-

efficient results are presented and compared with the exper-

imental results previously published [3]. In the last section

the results of frequency map analysis for the beam beam

case, with and without electron lens [4], are presented.

THE DIFFUSIVE MODEL
Given the large number of independent processes con-

tributing to the dynamics and smearing phase-space struc-

ture (noise, beam-beam, orbit jitter, etc.), we assumed that

the overall particle dynamics could be described using a

diffusive model. The time evolution of the particle distri-

bution function ρ, both for beam core particles and beam

tails, is therefore believed to follow the well-known diffu-

sion equation:

∂ρ

∂t
= ∇ · (D ∇(ρ)) (1)

The diffusion equation is derived from the continuity equa-

tion, which requires that the change in particle population
∂ρ
∂t is equal to the flux φ of incoming particles

∂ρ

∂t
= −∇ · φ (2)

and from the semi-empirical Fick’s law

φ = −D ∇ρ (3)

which states that the flux is proportional to the gradient

of the population itself via a proportionality factor D. In

order to understand the physical meaning of the diffusion

coefficient D it is important to define the space in which

the density function ρ is considered. In literature differ-

ent approaches have been explored. The obvious choice

to consider ρ = ρ(x, y, z), i.e. the density function in the

physical space, has been analyzed in detail in Ref. [5]. In a

single dimension, the diffusion equation reads as:

∂ρ(W )

∂t
=

∂

∂W

(
4Dph(W )

β
W

∂ρ

∂W

)
(4)

where the Courant Snyder invariant (single particle emit-

tance) W = (x2 + p2x)/β = (x2 + (βx′ + αx)2)/β has

been introduced. In the given formulation the general case

of Dph = Dph(W ) has been taken into account, however it

has been shown that, in case of a purely Brownian motion,

the diffusion coefficient in the physical space is indepen-

dent on the particle emittance W .

It can also be convenient to consider the diffusion equa-

tion in the action space, where the Hamiltonian action J in

the plane z for a single particle is defined as:

J =
z2max

4βz
(5)

for the generic z direction. This approach is particularly

useful when analyzing experimental data, where only the

particle maximum displacement zmax is known [2]. For

linear machines it is straightforward to show the relation

between the single particle emittance and the action, i.e.

W = 4J . In this case Equation 4 becomes:

∂ρ

∂t
=

∂

∂J

(
Dph

β
J
∂ρ

∂J

)
=

∂

∂J

(
DJ(J)

∂ρ

∂J

)
(6)

where the diffusion function DJ in the action space is

introduced. It follows that, in case of brownian motion in

the physical space, DJ(J) is expected to be linear in J, and

inversely proportional to the local beta function.

For a thin particle distribution in the range J − δ < J <
J + δ, the function DJ can be considered constant, and the

local diffusion equation becomes:

∂ρ

∂t
= DJ

∂2ρ

∂2J
(7)

where the diffusion coefficient DJ can be calculated as [6]:

DJ =
ΔJ2

2Δt
(8)

The analysis of both the experimental results [2, 3] and

the simulation data are based on Equation 7.
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Figure 1: Evolution in time of a narrow distribution in the

J2 space, 7σ amplitude, collision case, no electron lens.

WORKING IN A COUPLED MACHINE
It is worth noticing that the Tevatron is a coupled ma-

chine, therefore it is not possible to treat the vertical,

horizontal and longitudinal motion independently. How-

ever, for a linear machine, it is still possible to define

three uncoupled planes, i.e. the eigenmodes of the one

turn matrix, where the three normalized particle amplitudes

A1, A2, A3 [7] are invariants of the motion. When a strong

nonlinearity (e.g. beam-beam effect) is included in the sim-

ulation, it generates a beating of the particle amplitudes. To

compensate for the beating, the average amplitude over a

large number of turns is considered.

SIMULATION PARAMETERS
The code Lifetrac[1] has been used to calculate the dif-

fusion coefficient for anti protons in the Tevatron. Narrow

bi-Gaussian distributions in the average amplitude space

have been used as an input. The initial distribution width

is about .02 σ in both planes and its center is (nσ1, nσ2),
for n between 1 and 8. The population is of 1000 parti-

cles per distribution, tracked (with full 6D treatment) for

a total number of turns of 6 × 106 (equivalent to about 2

minutes). Different machine configurations have been con-

sidered: the single beam (purely random noise) and the col-

lider mode, with and without electron lens. For amplitudes

larger than 8σ it has been observed that, in the collision

case, the particles gain large amplitudes (above 50σ) within

few turns. This sudden particle loss is in good agreement

with the experimental observation of the dynamic aperture.

It has been verified that the observed aperture limitation

disappears when removing the parasitic IPs from the sim-

ulation, thus proving that the Tevatron dynamic aperture is

defined by the presence of parasitic IPs.

SIMULATION RESULTS
A typical evolution of the particle distribution in Hamil-

tonian action space J2 is shown in Figure 1. For each

distribution rms width of the distribution is calculated and

its evolution in time is considered: in Figure 2 the squared
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Figure 2: Time evolution of the the particle distribution

width in the action space J2.

width of the distribution is plotted versus time, for the three

considered configurations, same initial amplitude (7σ). It

can be noticed how the expected quadratic behavior (from

Equation 8) is verified only for the single beam, while in

the other two cases the diffusion is faster - which is typical

of resonance driven diffusion. In order to compare the

different cases, the local diffusion coefficient D2 is always

calculated trough a quadratic fit of the distribution width,

intended as a very conservative estimation when electron

lens is included.

The summary results for the coefficient D2 versus the

action J2 are presented in Figure 3. The results for the

other direction are similar. For the first curve (single

beam case) the only source of diffusion in the code is a

random noise matrix: in this case the linear dependency of

D2(J) (predicted by Equation 6) is verified. Including the

beam-beam effect (second curve) leads to diffusion coef-

ficient values which are about a factor two to five larger.

In the third curve, finally, the electron lens is activated,

and it effect on the beam diffusion is clearly visible: for

amplitudes lower than 3σ2 the core is untouched, while

in the electron lens range (amplitudes larger than 4σ2)

the diffusion coefficient is greatly enhanced. A moderate

increase in diffusion coefficient for the 3σ2 case is justified
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Figure 3: Diffusion coefficient D2 versus the Hamiltonian

action in the eigenmode 2.
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Figure 4: Frequency map analysis for the Tevatron, collision case, without electron lens (left) and with electron lens

(right).

by the fact that, as previously explained, the amplitude

indicated on the x axis is intended to be the average

amplitude, meaning that some of the particles can actually

reach a physical aperture larger than the inner electron lens

radius.

It is worth noticing that the overall diffusion coefficient

Dy perceived by a vertical collimator (such as in the exper-

iment described in [3] ) is determined by the behavior of

all the particles sitting in proximity to the collimator edge.

In the normalized average amplitude space the collimator

edge describes a curve ycoll, and the total diffusion coef-

ficient is a combination of the local diffusion coefficient

for all the particles positioned along this curve. The proper

calculation would require a full sampling of the amplitude

space, meaning massive computational resources. In this

article we only compare some representative points of the

amplitude space with the experimental results presented

in Ref. [3, Figure 5]. The experimental data are measured

with the collimator scan method for the collision case, with

no electron lens, and they are here compared to the second

curve in Figure 3. While the comparison for the particles in

the beam core is encouraging (same order of magnitude),

for amplitude between 4 and 8σy the experimental values

are up to a factor 105 larger than the simulated data. This

large difference is not yet understood.

In order to overcome the complexity of performing a full

sampling of the amplitude space, an alternative approach

has been explored, i.e. the frequency map analysis. FMA is

a convenient way to identify the machine resonances either

in the tune or in the amplitude space. The quality factor of

an FMA is the diffusion index id [8], which is equal to the

jitter of the main betatron tune in logaritmic scale. Even if

there is no explicit relation between the diffusion index and

the diffusion coefficient, the FMA is still a useful method

for a qualitative evaluation of the diffusive behavior. The

comparison between the FMA plots with and without elec-

tron lens (Figure 4) shows clearly the effect of the device,

which generates a dense region of additional resonances in

the beam halo area, leaving the beam core unaffected.

SUMMARY
The diffusion coefficient for some representative points

in the amplitude space has been calculated by fitting the

time evolution of delta-like particle distributions using the

diffusion equation, for different machine conditions. The

results confirm a strong efficiency of the electron lens as

an halo diffusive enhancer, leading to diffusion coefficients

which are at least a factor 10K higher than the values ob-

tained for the collision case. This result is confirmed by the

Frequency Map Analysis, which shows a clear intensifica-

tion of resonance lines for particle amplitudes larger than

the electron lens inner radius. If compared with past exper-

iments, the simulations successfully reproduce the diffu-

sion coefficients for the beam core, but still present a large

discrepancy for halo particles, still under investigation.
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