
CESR CONTROL SYSTEM UPGRADE TO LINUX
HIGH AVAILABILITY CLUSTER*

M. J. Forster, S. Ball, L. Bartnik, D. Bougie, R. Helmke, M. Palmer, S. Peck, D. Riley, R. Sholtys,
C. Strohman, CLASSE, Ithaca, New York, USA

Abstract
The Cornell Electron Storage Ring (CESR) accelerator

complex is used to support the Cornell High Energy
Synchrotron Source (CHESS) x-ray user facility and the
CESR Test Accelerator (CESRTA) ILC development
program. Several hundred electro-magnetic elements as
well as several thousand sensors are controlled and
monitored in real-time via a Multi-Port Memory device
(MPM). MPM access and control programs have used
Hewlett Packard (originally DEC) Alpha and VAX
computers running OpenVMS since 1988.

Due to the demanding throughput, computational and
storage requirements of the CESRTA experimental
program, as well as a desire to upgrade to more
supportable hardware, we have implemented a new Linux
control cluster based on an Infortrend 10 GbE Internet
Small Computer System Interface (iSCSI) storage device
and the Red Hat Cluster Suite. This paper will describe
the hardware and software changes required to upgrade
our VMS cluster to a high availability, high performance,
Linux control cluster.

INTRODUCTION
The CESR control system interfaces to the CESR field

bus, the XBus, via a VME-base MPM device [1]. In
preparation for the CESRTA research program, it was
clear that a new generation of high bandwidth and data
volume devices would exceed the capabilities that could
be provided by the existing OpenVMS architecture based
on Alpha and VAX nodes. In response, an Ethernet-based
extension of the accelerator XBus was developed to
support a new generation of beam instrumentation. In
conjunction with these modifications, processing
capability for the new data sources was provided using
standard Linux data servers and a preliminary interface to
the CESR MPM was developed. Based on the experience
developed as a result of this CESRTA endeavor, the CESR
operations group was able to develop a migration plan to
implement the full functionality of the control system in a
high availability Linux-based cluster. That migration is
presently underway.

OPENVMS-BASED CONFIGURATION
The current OpenVMS-based control system

configuration consists of a cluster of OpenVMS Hewlett
Packard (originally DEC) Alpha nodes networked by
DECnet and OpenVMS Cluster Communications
protocols over 100Mbit Ethernet connections. Six of
these nodes have direct access to the MPM, which
provides access to control and monitoring of all
accelerator devices. Historically, all of our background

and interactive control system programs have used these
six OpenVMS nodes [1].

LINUX-BASED CLUSTER SETUP
See Fig. 1 for an overview of the control cluster setup.

Data Storage
The new Linux-based control system is centered around

an Infortrend EonStor iSCSI storage system. This system
offers high-throughput storage, power-outage protection,
and fault-tolerent data integrity. To ensure high
availability, the EonStor uses a modular design including
redundant RAID (redundant array of independent disks)
controllers, power supplies, and cooling systems. The
RAID system provides for multiple drive failure while
allowing uninterrupted data access, and failed drives can
be replaced without taking down the system. An
Infortrend iSCSI solution was targeted to take advantage
of our in-house expertise while meeting our projected
throughput, performance and reliability needs.

The data on the EonStor is made accessible through an
Ethernet-based storage area network (SAN). This
provides block level access to the data. The SAN is used
for the cluster protocols and iSCSI traffic.

The shared SAN data is made available to the cluster
nodes through the Global File System 2 (GFS2). The
nodes function as peers and are allowed equal access to
the shared data. This shared access must be protected
with a distributed lock mechanism, or DLM. GFS2 was
selected as the cluster file system due to the file system
consistency it offers and its potential for better bandwidth
utilization. The DLM modules as supplied contained a
bug, which caused lock recovery time to be proportional
to the square of the number of locks to recover. When the
cluster was being used for operations the number of locks
was above 30,000, resulting in recovery time over 10
minutes when a cluster node was fenced. A patched local
build of the DLM module reduces the recovery time to
less than a minute, and is expected to be incorporated into
the next version of Red Hat Enterprise Linux (RHEL 6.4).

Linux Cluster Nodes
Initially, there were three types of computer processors

installed as a cluster largely determined by what was
readily available on-hand. A painful lesson was learned
that the cluster was not very stable with nodes of differing
configurations. When all of the cluster nodes were
updated to the machines which were behaving the most
reliably, namely IBM System x3550 M3, 12 core, 6 NIC
machines with redundant power supplies and disks, the
number of node failures decreased dramatically.

Network
Two Blade Networks G8124 10 Gb Ethernet switches

connect the cluster members. The EonStor iSCSI device

__

*Work supported by U.S. National Science Foundation, Award PHY-
0734867 and Award PHY-1002467, as well as, U.S. Department of
Energy, Award DE-FC02-08ER41538.

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR015

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

3999 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 1: The CESR control system layout. 10 Gb network connections are shown in red.

has two controllers with two 10 Gb NICs (network
interface cards) each, connected to both switches. Each
cluster member connects to the SAN through an
active/passive channel bonded network interface created
using 10 Gb connections to each switch. In addition,
Linux Device Mapper Multipath (DM-Multipath) is used
to provide redundant paths to the iSCSI device. This
setup provides full redundancy and enables automatic
failover and continued functionality in the event of a NIC
or cable failure, switch failure, or iSCSI controller failure.

 Moving forward, we plan to test cluster stability using
two 10 Gb interfaces instead of a single bonded interface,
and the effect of moving the cluster traffic to a separate
network from the iSCSI traffic.

Cluster Management
The cluster configuration has been evolving with our

understanding of the underlying cluster protocols and
their interactions with the network, dm-multipath, and
iscsid configuration. The current setup uses Scientific
Linux 6.2 (SL6) with Red Hat's High Availability Add-
On, which uses the Corosync Cluster Engine (version
1.4.1) for core cluster functionality. The initial setup used
Scientific Linux 5.4 (SL5) with the Red Hat Cluster Suite.
However, SL5's cluster2 protocol and cluster messaging
would not easily support our end goal of programmatic
cluster service control.

Our initial plan for upgrading to SL6 involved a mixed
cluster of SL5 and SL6. This should have been possible
according the specifications, but an attempt at this
produced corrupted entries in the GFS2 file system. We
quickly identified this incompatibility, and proceeded by
splitting the cluster in two. Half of the cluster remained
at SL5 and continued serving the GFS2 file systems and
running control system services. The other half of the
members were upgraded and used to create a parallel SL6

cluster. When testing was complete, we simply moved
the GFS2 file systems and all cluster services from the
SL5 to the SL6 cluster. When we were satisfied with the
transition and reliability of the SL6 cluster, the SL5
cluster was dissolved and the machines were then
upgraded and added to the SL6 cluster as they became
available. This process went very smoothly and
demonstrated the advantages of being able to easily swap
cluster services from node to node.

In the event of a cluster node failure, the cluster
management will: fence and power-cycle the failed node,
move its services to a live cluster member chosen
according to a preset failover scheme, and then return the
services to the recovered node if desired. A failed node is
generally identified within 10 seconds and currently takes
about five minutes to recover automatically. The transfer
time of services to a new node depends on the resources
the service is using, but in general is under 30 seconds.

LINUX TO ACCELERATOR CONTROL
INTERFACE

The Multi-Port Memory (MPM)
The main aggregation point for monitoring and

controlling the CESR accelerator system has been and
will continue to be a centralized multi-port memory or
MPM. The MPM consists of VMEbus-based, fast access
memory boards, a system controller board, a FIFO (first
in, first out) buffer board, and a semaphore array board.
The FIFO board provides messaging between processors
connected to the MPM. The semaphore board
implements mutual exclusion protection for critical areas
of memory. The MPM has ports to allow up to 16
processors to connect and have shared access to the data
[2].

THPPR015 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

4000C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

RTEMS MPM Servers
Server programs were created to run in an RTEMS

(real-time executive for multiprocessor systems)
environment on an MVME5500 board with a direct
input/output connection to an MPM port. These servers
allow clients to connect using Ethernet-based socket
communication. The RTEMS servers have been
programmed to provide the MPM access functions as they
were available from OpenVMS. A corresponding set of
functions has been made available as a client side library
for control system programs requiring MPM access to
link against. Three RTEMS servers are currently in use:
an operational server, a developmental server, and a
debugging server. Each server allows up to 100 client
connections simultaneously. The servers have been
successfully providing MPM connections to all control
system programs ported to Linux for over three months.
These client programs include those written in Fortran, C,
Java, Python and Matlab.

There were several challenges to the implementation.
The real-time nature of RTEMS brings with it little
memory protection across tasks, and a memory error in
the server program can crash the whole kernel. Another
struggle was the small scope of debugging tools available
for RTEMS. Currently, the best option is to run a GDB
server on one of the boards, which we dedicate to
debugging only. Linux GDB (Gnu Debugger) clients can
then connect to this board and issue debugging
commands. However, a crash often takes down the GDB
server as well, preventing any further debugging. In
general, these challenges have made RTEMS debugging
slower than anticipated.

Control System Program Porting
The majority of control system code in use on our

OpenVMS cluster was written in Fortran77. When
porting the code to Linux, the decision was made to
update the source code to the Fortran90 standard. This
decision has slowed down the porting process, but will
leave a more maintainable result on the Linux side.

There was some time lost in replacing or working
around the use of some OpenVMS specific Fortran
conventions or functions. Another hurdle has been with
the X11 windowing system, which is used ubiquitously
for control system displays. Some of the X11 standards
were interpreted rather loosely on OpenVMS and, as a
result, several long-standing bugs needed to be fixed
when a display program was moved to Linux.

Roughly 20 percent of the control system programs
have been ported to Linux so far.

Control System Services
Control system programs such as monitoring displays

and knob console control have been ported from running
as detached programs on OpenVMS to running as Linux
service daemons on the cluster. The services are set up
with standard init.d style scripts which provide functions
for inquiring about the running status of the service,
starting the service, and stopping the service.

Currently, a set of text files defines which control
system service runs on a particular node. A background
job scheduled to run every minute checks each node and
service, making the init.d status inquiry. If a job is found
to be not running, it is restarted. This setup is similar to
the automatic restart procedure which was in place in the
OpenVMS-based control system and proved sufficient for
over two decades of CESR use.

The plan is to further improve the recovery for a service
failure by converting these standard Linux daemon
services to cluster services. This will allow the services
to switch nodes automatically on a node failure and restart
within seconds. Furthermore, it is planned to add in the
capability for programmatic control of the services so that
they may be paused, stopped or restarted in response to
control system events. This implementation is pending
cluster messaging subroutines being made available to our
code libraries.

CONCLUSIONS
Only after several Linux node hardware and cluster

configuration iterations is the implementation of
clustering provided by the Linux environment
approaching the level of robustness that has been
provided by OpenVMS for many years. It appears to be
cost-effective and provides a very effective platform for
future control system development.

The software porting process has gone more slowly
than expected due to some unexpected challenges.
Fortunately, the migration path to Linux has allowed for
the OpenVMS cluster to remain fully operational so
programs can continue to run on the OpenVMS side.
However, our accelerator code libraries have added some
changes which are not easily backwards compatible to
OpenVMS, and the OpenVMS library is becoming dated.
This cannot be maintained indefinitely and provides
further impetus to finish the porting of the control
programs quickly.

System level cluster services have demonstrated
automatic failover with good response times. This now
needs to be implemented for accelerator control services.

ACKNOWLEDGMENT
We would like to thank Tim Wilksen, now at DESY, for

his groundwork and insight with the RTEMS MPM server
and client framework.

REFERENCES
[1] R. G. Helmke, D. H. Rice, and C. Strohman, Nuclear

Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 247 (1986) 93, ISSN
01689002.

[2] C. R. Strohman and S. B. Peck, "Architecture and
performance of the new CESR control
system," Proc. of the 1989 Particle Accelerator
Conference, vol. 3, pp. 1687-1689 (1989).

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR015

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

4001 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

