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Abstract
The Cornell Electron Storage Ring (CESR) accelerator 

complex  is  used  to  support  the  Cornell  High  Energy 
Synchrotron Source (CHESS) x-ray user facility and the 
CESR  Test  Accelerator  (CESRTA)  ILC  development 
program.  Several  hundred  electro-magnetic  elements  as 
well  as  several  thousand  sensors  are  controlled  and 
monitored in real-time via a Multi-Port Memory device 
(MPM).  MPM access  and  control  programs  have  used 
Hewlett  Packard  (originally  DEC)  Alpha  and  VAX 
computers running OpenVMS since 1988. 

Due to  the demanding throughput,  computational  and 
storage  requirements  of  the  CESRTA  experimental 
program,  as  well  as  a  desire  to  upgrade  to  more 
supportable hardware, we have implemented a new Linux 
control  cluster  based on an Infortrend  10 GbE Internet 
Small Computer System Interface (iSCSI) storage device 
and the Red Hat Cluster Suite. This paper will describe 
the hardware and software changes required to upgrade 
our VMS cluster to a high availability, high performance, 
Linux control cluster.

INTRODUCTION
The CESR control system interfaces to the CESR field 

bus,  the  XBus,  via  a  VME-base  MPM device  [1].   In 
preparation  for  the  CESRTA research  program,  it  was 
clear that a new generation of high bandwidth and data 
volume devices would exceed the capabilities that could 
be provided by the existing OpenVMS architecture based 
on Alpha and VAX nodes.  In response, an Ethernet-based 
extension  of  the  accelerator  XBus  was  developed  to 
support  a  new generation  of  beam instrumentation.   In 
conjunction  with  these  modifications,  processing 
capability  for the new data sources was provided using 
standard Linux data servers and a preliminary interface to 
the CESR MPM was developed.  Based on the experience 
developed as a result of this CESRTA endeavor, the CESR 
operations group was able to develop a migration plan to 
implement the full functionality of the control system in a 
high availability Linux-based cluster.  That migration is 
presently underway.

OPENVMS-BASED CONFIGURATION
The  current  OpenVMS-based  control  system 

configuration consists of a cluster of OpenVMS Hewlett 
Packard  (originally  DEC)  Alpha  nodes  networked  by 
DECnet  and  OpenVMS  Cluster  Communications 
protocols  over  100Mbit  Ethernet  connections.   Six  of 
these  nodes  have  direct  access  to  the  MPM,  which 
provides  access  to  control  and  monitoring  of  all 
accelerator devices.   Historically,  all  of our background 

and interactive control system programs have used these 
six OpenVMS nodes [1].

LINUX-BASED CLUSTER SETUP 
See Fig. 1 for an overview of the control cluster setup.

Data Storage
The new Linux-based control system is centered around 

an Infortrend EonStor iSCSI storage system.  This system 
offers high-throughput storage, power-outage protection, 
and  fault-tolerent  data  integrity.   To  ensure  high 
availability, the EonStor uses a modular design including 
redundant RAID (redundant array of independent disks) 
controllers,  power  supplies,  and  cooling  systems.   The 
RAID system provides  for  multiple  drive  failure  while 
allowing uninterrupted data access, and failed drives can 
be  replaced  without  taking  down  the  system.   An 
Infortrend iSCSI solution was targeted to take advantage 
of  our  in-house  expertise  while  meeting  our  projected 
throughput, performance and reliability needs.

The data on the EonStor is made accessible through an 
Ethernet-based  storage  area  network  (SAN).   This 
provides block level access to the data.  The SAN is used 
for the cluster protocols and iSCSI traffic.

The shared SAN data is made available to the cluster 
nodes  through the  Global  File  System 2 (GFS2).   The 
nodes function as peers and are allowed equal access to 
the shared data.   This  shared access  must  be  protected 
with a distributed lock mechanism, or DLM.  GFS2 was 
selected as the cluster file system due to the file system 
consistency it offers and its potential for better bandwidth 
utilization.  The DLM modules as supplied contained a 
bug, which caused lock recovery time to be proportional 
to the square of the number of locks to recover.  When the 
cluster was being used for operations the number of locks 
was  above  30,000,  resulting  in  recovery  time  over  10 
minutes when a cluster node was fenced.  A patched local 
build of the DLM module reduces the recovery time to 
less than a minute, and is expected to be incorporated into 
the next version of Red Hat Enterprise Linux (RHEL 6.4).

Linux Cluster Nodes
Initially, there were three types of computer processors 

installed  as  a  cluster  largely  determined  by  what  was 
readily available on-hand.  A painful lesson was learned 
that the cluster was not very stable with nodes of differing 
configurations.   When  all  of  the  cluster  nodes  were 
updated to the machines which were behaving the most 
reliably, namely IBM System x3550 M3, 12 core, 6 NIC 
machines  with  redundant  power supplies  and disks,  the 
number of node failures decreased dramatically.

Network
Two Blade Networks G8124 10 Gb Ethernet switches 

connect the cluster members. The EonStor iSCSI device 
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Figure 1: The CESR control system layout.  10 Gb network connections are shown in red.

has  two  controllers  with  two  10  Gb  NICs  (network 
interface cards)  each, connected to both switches.  Each 
cluster  member  connects  to  the  SAN  through  an 
active/passive channel bonded network interface created 
using  10  Gb  connections  to  each  switch.   In  addition, 
Linux Device Mapper Multipath (DM-Multipath) is used 
to  provide  redundant  paths  to  the  iSCSI  device.   This 
setup  provides  full  redundancy  and  enables  automatic 
failover and continued functionality in the event of a NIC 
or cable failure, switch failure, or iSCSI controller failure.

  Moving forward, we plan to test cluster stability using 
two 10 Gb interfaces instead of a single bonded interface, 
and the effect of moving the cluster traffic to a separate 
network from the iSCSI traffic.

Cluster Management
The cluster  configuration has been evolving with our 

understanding  of  the  underlying  cluster  protocols  and 
their  interactions  with  the  network,  dm-multipath,  and 
iscsid  configuration.   The  current  setup  uses  Scientific 
Linux 6.2 (SL6) with Red Hat's  High Availability Add-
On,  which  uses  the  Corosync  Cluster  Engine  (version 
1.4.1) for core cluster functionality.  The initial setup used 
Scientific Linux 5.4 (SL5) with the Red Hat Cluster Suite. 
However, SL5's cluster2 protocol and cluster messaging 
would not easily support our end goal of programmatic 
cluster service control.

Our initial plan for upgrading to SL6 involved a mixed 
cluster of SL5 and SL6.  This should have been possible 
according  the  specifications,  but  an  attempt  at  this 
produced corrupted entries in the GFS2 file system.  We 
quickly identified this incompatibility, and proceeded by 
splitting the cluster in two.  Half of the cluster remained 
at SL5 and continued serving the GFS2 file systems and 
running control  system services.   The  other  half  of  the 
members were upgraded and used to create a parallel SL6 

cluster.  When testing was complete, we simply moved 
the GFS2 file  systems and all  cluster services from the 
SL5 to the SL6 cluster.  When we were satisfied with the 
transition  and  reliability  of  the  SL6  cluster,  the  SL5 
cluster  was  dissolved  and  the  machines  were  then 
upgraded and added to the SL6 cluster as  they became 
available.   This  process  went  very  smoothly  and 
demonstrated the advantages of being able to easily swap 
cluster services from node to node.

In  the  event  of  a  cluster  node  failure,  the  cluster 
management will: fence and power-cycle the failed node, 
move  its  services  to  a  live  cluster  member  chosen 
according to a preset failover scheme, and then return the 
services to the recovered node if desired.  A failed node is 
generally identified within 10 seconds and currently takes 
about five minutes to recover automatically.  The transfer 
time of services to a new node depends on the resources 
the service is using, but in general is under 30 seconds.

LINUX TO ACCELERATOR CONTROL 
INTERFACE

The Multi-Port Memory (MPM)
The  main  aggregation  point  for  monitoring  and 

controlling  the  CESR accelerator  system has  been  and 
will  continue  to  be  a centralized  multi-port  memory  or 
MPM.  The MPM consists of VMEbus-based, fast access 
memory boards, a system controller board, a FIFO (first 
in, first out) buffer board, and a semaphore array board. 
The FIFO board provides messaging between processors 
connected  to  the  MPM.   The  semaphore  board 
implements mutual exclusion protection for critical areas 
of  memory.   The  MPM  has  ports  to  allow  up  to  16 
processors to connect and have shared access to the data 
[2].
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RTEMS MPM Servers
Server  programs  were  created  to  run  in  an  RTEMS 

(real-time  executive  for  multiprocessor  systems) 
environment  on  an  MVME5500  board  with  a  direct 
input/output connection to an MPM port.  These servers 
allow  clients  to  connect  using  Ethernet-based  socket 
communication.   The  RTEMS  servers  have  been 
programmed to provide the MPM access functions as they 
were available from OpenVMS.  A corresponding set of 
functions has been made available as a client side library 
for  control  system programs  requiring  MPM access  to 
link against.  Three RTEMS servers are currently in use: 
an  operational  server,  a  developmental  server,  and  a 
debugging server.   Each server  allows up to  100 client 
connections  simultaneously.   The  servers  have  been 
successfully  providing  MPM connections  to  all  control 
system programs ported to Linux for over three months. 
These client programs include those written in Fortran, C, 
Java, Python and Matlab.

There were several  challenges to  the implementation. 
The  real-time  nature  of  RTEMS  brings  with  it  little 
memory protection across tasks, and a memory error in 
the server program can crash the whole kernel.  Another 
struggle was the small scope of debugging tools available 
for RTEMS.  Currently, the best option is to run a GDB 
server  on  one  of  the  boards,  which  we  dedicate  to 
debugging only. Linux GDB (Gnu Debugger) clients can 
then  connect  to  this  board  and  issue  debugging 
commands.  However, a crash often takes down the GDB 
server  as  well,  preventing  any  further  debugging.   In 
general, these challenges have made RTEMS debugging 
slower than anticipated.

Control System Program Porting
The  majority  of  control  system  code  in  use  on  our 

OpenVMS  cluster  was  written  in  Fortran77.   When 
porting  the  code  to  Linux,  the  decision  was  made  to 
update the source code to the Fortran90 standard.  This 
decision has  slowed down the porting process,  but  will 
leave a more maintainable result on the Linux side.  

There  was  some  time  lost  in  replacing  or  working 
around  the  use  of  some  OpenVMS  specific  Fortran 
conventions or functions.  Another hurdle has been with 
the X11 windowing system, which is used ubiquitously 
for control system displays.  Some of the X11 standards 
were interpreted  rather  loosely  on OpenVMS and,  as  a 
result,  several  long-standing  bugs  needed  to  be  fixed 
when a display program was moved to Linux.

Roughly  20  percent  of  the  control  system  programs 
have been ported to Linux so far.

Control System Services
Control  system programs such as monitoring displays 

and knob console control have been ported from running 
as detached programs on OpenVMS to running as Linux 
service daemons on the cluster.  The services are set up 
with standard init.d style scripts which provide functions 
for  inquiring  about  the  running  status  of  the  service, 
starting the service, and stopping the service. 

Currently,  a  set  of  text  files  defines  which  control 
system service runs on a particular node.  A background 
job scheduled to run every minute checks each node and 
service, making the init.d status inquiry.  If a job is found 
to be not running, it is restarted.  This setup is similar to 
the automatic restart procedure which was in place in the 
OpenVMS-based control system and proved sufficient for 
over two decades of CESR use.

The plan is to further improve the recovery for a service 
failure  by  converting  these  standard  Linux  daemon 
services to cluster services.  This will allow the services 
to switch nodes automatically on a node failure and restart 
within seconds.  Furthermore, it is planned to add in the 
capability for programmatic control of the services so that 
they may be paused, stopped or restarted in response to 
control  system events.   This implementation is pending 
cluster messaging subroutines being made available to our 
code libraries.

CONCLUSIONS
Only  after  several  Linux  node  hardware  and  cluster 

configuration  iterations  is  the  implementation  of 
clustering  provided  by  the  Linux  environment 
approaching  the  level  of  robustness  that  has  been 
provided by OpenVMS for many years.  It appears to be 
cost-effective and provides a very effective platform for 
future control system development.

The  software  porting  process  has  gone  more  slowly 
than  expected  due  to  some  unexpected  challenges. 
Fortunately, the migration path to Linux has allowed for 
the  OpenVMS  cluster  to  remain  fully  operational  so 
programs  can  continue  to  run  on  the  OpenVMS  side. 
However, our accelerator code libraries have added some 
changes  which  are  not  easily  backwards  compatible  to 
OpenVMS, and the OpenVMS library is becoming dated. 
This  cannot  be  maintained  indefinitely  and  provides 
further  impetus  to  finish  the  porting  of  the  control 
programs quickly.  

System  level  cluster  services  have  demonstrated 
automatic failover with good response  times.  This  now 
needs to be implemented for accelerator control services.
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