

FRIB HIGH-LEVEL SOFTWARE ARCHITECTURE*
P. Chu#, E. Berryman, T. Brown, R. Gaul, S. Peng, V. Vuppala, FRIB, East Lansing, MI 48824,

USA

Abstract
The Facility for Rare Isotope Beams (FRIB) is setting

up its high-level application software architecture. The
architecture consists of back-end data storage,
client/service infrastructure, control system connectivity,
supporting libraries and front-end Graphical User
Interface (GUI). The relational database and services are
based on the Integrated Relational Model of Installed
Systems (IRMIS) design. The GUI is based on Control
System Studio (CSS) framework. Libraries, service, data
access and GUI tools will be available as Application
Programming Interface (API). The infrastructure and
technologies chosen here will utilize the robustness and
performance for applications, as well as support quick
prototyping for physicists. The overall architecture and
some prototypes are described.

INTRODUCTION
The architecture for FRIB High-level Applications

(HLAs) is to utilize feasible and cost effective
technologies for the software needs during the FRIB
design, installation, commissioning and operation. For a
modern accelerator, the software complexity is way
beyond simple personal programming effort; therefore
architecture reflecting all modern software needs is
necessary as a systematic approach. On the other hand, a
comprehensive architecture design allows developers to
take advantage of new technologies in computer software,
hardware and network. The architecture design serves as
a standard applied to the FRIB Accelerator Systems with
extension to the Experimental Systems. A standard
architecture can avoid unnecessary software complication
such as hard-wiring or special codes, and duplicating
efforts in various applications.

ARCHITECTURE OVERVIEW
HLA architecture has to fulfil both functional and non-

functional requirements. Functional requirements include
database as backend storage, online physics model, data
integrity and control system connectivity support; while
the non-functional requirements should cover
performance, reliability and scripting support.

The data flow view of the architecture is shown in Fig.
1. Starting from the bottom of the diagram, all static data
are stored in a MySQL-based global database (Global
DB) similar to the IRMIS (Integrated Relational Model of
Installed Systems). Physics routines, machine tuning
algorithms and other utilities are supplied as software

libraries in the left-hand side of the diagram. XAL
Toolkit [1], optimization routine, and data plotting
package are examples of many supporting library
packages. Device controls are done via EPICS
(Experimental Physics and Industrial Control System).
Client applications are the user interfaces to the entire
control systems. Examples of client applications are
electronic logbook (E-log), machine settings save and
restore (Save/Restore) and beam tuning applications. In
the middle, a group of services provide all links among
the database, API libraries, interaction with control
systems, and user controlled interfaces. The services are
distributed as their functions.

Figure 1: Top-level FRIB HLA architecture diagram.

The architecture design should take into account of all

possible software needs such as data sharing, correlation,
data exchange among applications, code reusability and
cost efficiency. It will be difficult to deal with many ad
hoc applications, if the overall architecture is not well
structured. Design considerations are described briefly
here.

Simplicity
A simple architecture system is more cost effective and

easy to maintain. Typically a simple system can provide
better performance with less overhead.

Service-oriented
Standalone applications typically need to prepare large

amount of data initialization, to perform heavy
computation, to communicate in real time, and to display
in high repetition rate of updates. The result of such
heavy applications is poor performance and less
reliability.

*Work supported by the U.S. Department of Energy Office of Science
under Cooperative Agreement DE-SC0000661.
#chu@frib.msu.edu

THPPR014 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3996C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

One way to solve the performance and reliability
problems is to implement a Service-Oriented Architecture
(SOA) for high level applications [2]. Servers will handle
heavy computation for better performance. Reliability
can be improved because functions are distributed to
various services which have the same standard. Properly
designed service architecture also provides better
flexibility and extensibility because they can be highly
modularized and each can be swapped easily. SOA is not
needed for day one and can convert to service as needed.
Because of the architecture’s modularization, it is easy to
switch to new technologies when they are available.

Up-to-date Technologie s
The architecture should be based on currently widely

available technologies such as Web services as Web
compatibility, EPICS v4 as new EPICS community trend
and Eclipse plug-in architecture as package management.
These technologies are just examples for the architecture
design consideration. As new technologies are available
and matured, the team can consider the possibility of
early adoption. Any new technologies will be used for
production have to be proven robust and easy to maintain.
Many new technologies such as web approach are
optional and presently not in the baseline requirements.

Re-usability and xtensibility E
Existing software such as XAL, IRMIS

schema/services can be reused at FRIB in the way of
callable API. In addition, some GUI components such as
orbit display, embedded e-log screen, and “Save to e-log”
button should be callable API.

Furthermore, common functionality can be shared
among applications. If any application has to implement
every function in it without sharing common functions
among applications, the maintenance overhead is high
and application code might be overly complicated. Also,
even if some functions are not exactly the way application
intending to use, it is easy to extend the existing functions
for new needs.

Portability
Applications should be possibly adopted by other

accelerator facilities. Any library components or
packages developed here should not include FRIB
specific hardwired code. It is recommended to use
configuration files to handle site specific data. This will
enable community-wide collaboration.

Security
To ensure uninterrupted operation, security is a vital

part of the architecture. Security consideration should be
a balance between access convenience and safeguarding
of the systems.

Collaboration
With limited resources and budget, it is practically not

possible to develop a full blown software system with one
institute alone. On the other hand, many accelerator

institutes face similar issues for high-level applications.
Collaboration can be efficient to share work load.
Properly dividing the entire software system can then
distribute work effectively among collaborators.

SERVICES
Several services have been identified for the FRIB

commissioning and operation needs. They are described
below.

Magnet Service
Magnet service handles all magnet PVs for reading,

setting and monitoring. Client applications do not have
to worry about EPICS Channel Access connection. This
service should have the following features:

 Updating set values and read-back values for all
magnets with monitoring capability.
 Providing magnet statuses.
 Unit and magnet name conversion between physics
and engineering (EPICS) names.
 Handling out-of-tolerance exception when trying to
set a magnet.
 Knowing how to gracefully roll back magnets if any
failed to set and logging problems.
 Providing other magnet attributes such as location,
polarity.
 Handling multiple channels in parallel for best
performance.

RF Service
Phase and amplitude for RF cavities should be locked

to their desired energy profile. A feedback-like program
runs continuously to track RF settings such that they are
not drifting away from the desired energy profile. Also,
running programs such as LEM and recovering from
cavity quench requires careful RF setting, i.e. ramping in
slow speed; all these considerations should be built in the
RF Service.

Model Service
Model service runs online model periodically and

makes up-to-date model data available for clients. This
model server can be extended to cover not only XAL
model but many other modelling codes with uniform API.
Details for the model server will be described in a
separate contribution [3].

LEM Service
Linac energy manager (LEM) for maintain certain

beam optics due to energy change should run all the time
to allow fast optics correction and restoration.

Save/Restore Service
Save/Restore has to connect to many channels. It could

be very heavy load to IOCs and network to have each
client having its own connection to all those channels. A
service can connect all these channels and monitor them

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR014

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

3997 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

all the time. Whenever a SCORE snapshot is requested,
all data can be served up immediately.

BPM Service
BPM (Beam Position Monitor) service collects all the

BPM data and can be buffered for clients to consume. All
BPM data should be time-correlated in one collection
record. Typical clients for this service are Orbit Display
and Orbit Correction.

Beam Loss Monitor Service
This service is similar to the BPM Service but, instead,

for monitoring Beam Loss Monitors (BLM). A client for
this service is display for beam loss across the entire
machine.

Steering Service
This service provides continuous orbit correction

solution. It can be a back-end for transverse feedback.
This service is a client of the BPM Service.

Directory Service
Directory Service provides information about the

control system including its services. It is mainly
showing related information from the database with
searchable capability.

Alarm Service
The service provides access to alarm information and

alarm configuration data.

Authentication Service
Authenticates users, and authorizes access to services,

devices, instrument access, various logbooks and even
access to database are included in the Authentication
Service.

Logbook Service
Logbook Service is to manage entries in the logbook.

DATABASE
The Global Database inherits major concepts and

functionalities from IRMIS and its services. IRMIS
subschemas cover many areas such as devices
(components) and documentation (electronic document
Traveller). In general, users do not need to access the
database directly and all access is through services.
Business logic is mostly embedded in the service layer to
avoid complication at the database level. For each
subschema, there is at least one corresponding service for
managing data access as well as additional data
processing. The Global DB has similar to IRMIS’
subschema structure.

So far, there are 17 subschemas identified for the
Global DB. The “core” of this schema is the Installation
which is based on accelerator design. Within Installation,
Components hold data for any entity or building blocks of
FRIB such as magnets, power supplies, cavities etc.;
Configuration then represents the entities that exist on the

blueprint or configuration of the FRIB facility. As
mentioned above, one purpose to modularize the entire
schema is to distribute work among collaborators. On the
other hand, all subschemas are loosely coupled to ensure
data correlated properly. Note that the control data is
mostly residing within control systems as EPICS records,
not in the relational database. However, the control
systems should be initialized from the relational database.
All the other subschemas are based on applications.

FRIB Naming Convention will be supported in the
Components subschema and service. FRIB official
parameter should be a by-product of the Installation
subschema.

A Brief description for each subschema is listed below.
 Alarm – maintain alarm settings.
 Authentication and authorization – user
authentication, group and role mapping information.
 Cables – cable connection information.
 Directory Service – organized device information
for easy lookup.
 Installation – physical and logical information about
the machine and its component systems.
 Interlocks – interlock hierarchy or dependency.
 Inventory – spare parts and stock items.
 Lattice – position, length, default setting and other
physics related information.
 Logbook – electronic logbook entries.
 Maintenance – preventive maintenance data and
scheduling, failure analysis, and lifetime analysis.
 Model – physics model data.
 MPS – machine protection system (MPS) state
dump, MPS faults for post-mortem analysis.
 Operations – beam statistics, run hours, beam on
target, shift summary, downtime, and bypass
records.
 Physics – results from physics applications or
experiments.
 PV – EPICS Process Variable (PV) information.
 Save and restore – machine snapshot and restore
condition (certain signals cannot be restored
unconditionally).
 Traveller – work flow control and process tracking
for measurements, calibration and test data.

REFERENCES
[1] J. Galambos et al, “XAL Application Programming

Structure,” p. 79, Proceedings of 2005 Particle
Accelerator Conference.

[2] G. Shen et al., “A Novel Approach for Beam
Commissioning Software Using Service Oriented
Architecture,” PCaPAC 2010, Saskatoon,
Saskatchewan, October 2010, WEPL037, p. 100
(2010).

[3] P. Chu et al, “Online Physics Model Platform”,
TUPPC048, these proceedings.

THPPR014 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3998C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

