
PROGRESSES ON !CHAOS DEVELOPMENT*

Luca Gennaro Foggetta#, Claudio Bisegni, Simone Calabrò, Paolo Ciuffetti, Giampiero Di Pirro,
Giovanni Mazzitelli, Alessandro Stecchi, INFN-LNF, Frascati (Roma), Italy

Luciano Catani, Domenico Di Giovenale, Federico Zani, INFN-Roma II, Roma, Italy

Abstract
!CHAOS (Control System based on Highly Abstracted

and Open Structure), the new control system architecture
proposed by INFN is in development and some parts of it
are now under test on the DAØNE and SPARC
complexes. Although the main goal of the !CHAOS
project remains the accelerator-based research facility
proposed for the Cabibbo Lab and the SuperB accelerator,
other applications are under study in order to adapt this
new design to the needs coming from different fields,
with a growing interest from many companies. Recent
developments, tests results, potential applications and
future project's plans are presented.

INTRODUCTION
Nowadays, high speed communications having low

number of handshaking and status words are the focus of
new internet community technologies.

Having taken care of the obvious differences, this
“distributed cybernetic systems” is one of the
technologies we took as reference in identifying a new
strategy for building a new paradigm for a distributed
control system (DCS) [1]. It consists of different levels of
abstraction in between the hardware and the human
endpoints, ensuring the independence of the DCS [2]
remaining part from the single controlled element. This is,
obviously, quite difficult to achieve if a large number of
unhomogeneous elements has to be integrated in different
and dynamic configurations. This problem can even grow
enormously if the whole system has to be maintained for
years. To reduce complexity and diversity of interfaces to
hardware, we focus on Ethernet as the !CHAOS preferred
bus due to its unquestioned robustness and flexibility:
standard !CHAOS I/O hardware will include embedded
computing and networking capabilities. Moreover, to
ensure seamless device integration, we will avoid
proprietary busses, software and technologies. Instead we
are interested in emerging technologies borrowed from
cutting-edge Internet services. So far, our main effort has
been dedicated to designing an accelerator control and
data acquisition system (DAQ) based on a synergic
combination of network distributed object caching (DOC)
and a non-relational key/value databases (KVDB), these
software technologies matching the requirements of our
innermost abstraction layer. The performances we expect
from these technologies are quite intuitive: speed of data
storage and retrieval for the distributed caching, data

throughput and queries execution time for the database
and, especially, how much this performances can benefit
from their inherent scalability. The conjunction of the
overall hardware and the software performing the control
is achieved by defining our custom dataset (DS) for each
actor (endpoint) in the !CHAOS framework. In the DS
there is a unique identifier of each instantiation that
belongs to one element of every hardware or software
classes. The Metadata Server is the logical element that
ensures the system configuration, the startup
communications among endpoints; it also hosts the syntax
and semantic of DS.

!CHAOS
!CHAOS intends to provide a solution that naturally

allows: redundancy of all its parts, intrinsic scalability,
minimization of points of failure, hardware hot-
integration and auto configuration. It will be suitable for
the slow control of a large number of apparatuses of
different size and complexity. In !CHAOS the strategy
adopted for the communication between components
might be compared to the rules followed in the social
forums: if someone has something important to say, it is
on its own duty to send it to a generalized cache of
information. Vice versa, if some component wants to
gather information about the status of another endpoint, it
is again their duty to fetch the information. Practically
speaking, we distributed the endpoints inter-processes,
relying on their intention. These requirements suggest
organizing the data flow as an autonomous (and
asynchronous) data pushing and retrieving to and from a
central fast collector (Fig. 1).

Figure 1: Schematic of !CHAOS.

So, our effort was to create an infrastructure, in
someway similar to an OS, where the standard of
sending/retrieving data, the endpoint proxy software and

* Work partially supported by AIDA grant no. 262025 and SuperB coll.
luca.foggetta@lnf.infn.it

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR003

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

3969 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

the information collecting/distributing service, are well
defined and consistently providing a communication
solution. Also, we choose existing software products (i.e.
RPC, serialization, data storage KVDBs, …) on the base
of their community support and reliability.

As for the OSs, we divided !CHAOS in abstraction
layers. They are completely developed in C++, with low
level standard and POSIX calls both to ensure cross-
compilation in different operating system and require the
minimal effort to maintain it in different kernel versions.
We have successfully compiled !CHAOS on MAC and
Linux OS’s and a minimal custom distribution (starting
from Debian) is under debugging to be installed in our
ARM test boards. The RPC message flow to and from
endpoints is accomplished by using key-value paradigm,
for now implemented with BSON[3] specification. We
have to point out that !CHAOS employs a distributed
object caching for the real-time data access (Live
Database) based on MEMCACHED[4] and a KVDB for
data archiving (History Database) based on
MONGODB[5]. These two components provide the
caching memory service of all the system, where each
information comes from a single endpoint that tags the
information itself. This one can be retrieved by any of the
other endpoint.

First Abstraction Layer (FAL) - Data Message
This abstraction layer works on key-value pairs. The

information are exchanged between two nodes,
accordingly with these general concepts:
 a node is an internal addressable entry registered into

a MessageBroker (a kind of message router that
abstracts the client, the server and the dispatcher to
every classes that want to export a method)

 each MessageBroker publish its services in a tcp port
[ip:port]

 a node is an entity that registers some actions using
MessageBroker and it is identified by a string (alias
or first part of uuid)

 an action receives and returns an RPC object
managed by MessageBroker

 Software tools (i.e. RPC controller, databases,
input/output from hardware…) are independent

This layer acts as Data Proxy Service, implementing

the following operations on data:
 push live/history data for a device
 create index on device::attribute::{action}
 delete index on device::attribute
 retrieve data with logical operation on attribute and

index

We use two kind of data forwarding:
 Message, the information are sent to a remote host
 Request, the information are sent to remote host, and

an answer is awaited

In either types of data forwarding, a result of
submissions is sent to the client when a server has
received the data. A message can bring a sub message,
which is dispatched after the main message has been
successfully executed.

The data serialization protocol adopted for !CHAOS is
BSON, a binary-encoded JSON (JavaScript
ObjectNotation) documents, optimized for fast storage
performance. We choose BSON for the wide community
support and for its intrinsic simplicity. In the duty of the
innermost abstraction layer, BSON well suits in, taking
the key-value couples mediated by intrinsic information
of data-type (letting some fundamental possibility in
customization of the latter). BSON has an overall
structure extremely clever and suitable for the different
needs related to the message delivery that can arise in an
accelerator machine complex.

We have the intention to customize some properties of
the BSON specification to introduce new kind of data
type, increasing the uniformity on data transfer. The
BSON protocol is now under stress test, even though it
remains a possibility to use other serialization methods
with minimal effort, given the existence of this
abstraction layer.

Second Abstraction Layer(SAL) - Common Tool
Having defined the messaging layer, we generalized the

way !CHAOS interfaces to clients and GUI on one side,
and front-end to the other side. For the human readout and
data representation we developed the User Interface
Toolkit (UI) while for diagnostic/DAQ/control hardware
we developed the Control Unit (CU). In addition we
introduced the concept of Execution Unit Toolkit (EU)
intended for computational software service (as dynamic
apparatus control and data calculation service). These
toolkits divides essentially in three parts, but using the
FAL, their synergic work is assured by the Common
Toolkit C++ software.

The Control Unit (CU) abstracts the !CHAOS resources
to the device drivers developers. It completely manages
data, controls scheduled operation and commands flow,
back and forth from the !CHAOS (live and histo DB’s) to
the hardware processes. The device’s programmer is only
asked to develop the driver for the specific controlled
hardware using the CU API’s (DMP = Device
Management Plugin). Once the device driver is integrated
with the CUToolkit, the CU will be installed directly on
the HW, if it hosts an embedded computational unit, or in
a host that controls HW with an external bus. So, CU
works as local process owning six elementary C++
methods, well described in [2], implementing the six
standard operations in the CS. The principal methods are
the “defineActionAndDataset”, where the CU is
instructed from !CHAOS on which hardware is attached
to and the “run” method, which is called automatically
from the CU for controlling and polling the HW. This
method also collects the Live data and send it
MEMCACHED via the FAL. One or more instances of

THPPR003 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3970C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

CU can run simultaneously, though completely
independent, in the front-end controller. Each of them
will be dedicated to a particular device or a family
thereof, specialized for that particular component by
means of the unified DMP.

So, the machine data flow is stable maintained and
refreshed by CU’s scheduled and/or asynchronous calls
and the LiveDB and HistoDB should be used for the data
displaying and machine controlling. The displaying
feature is accomplish by UI, with the same working
structures of the CU but devoted to manage the
synchronization in the presentation and in the packaging
of data. The latter is in charge of collecting data into
usable and dynamically created logical groups of
information. We have produced a minimal group of API
for retrieving data with fast refreshing, obtained with a
refresh service, where the data displaying processes
submit a registered fetch action in MEMCACHED. For
the graphical user interface, we use QT environment,
even if a Data Display Plugin (DDP) is the next step to
allow data display and analysis with the mostly used
engineering and scientific software package (like ROOT,
MATLAB®, LabVIEW®) in the same parallel way of the
DMP. The most recent development has been dedicated to
the development of the EUToolkit. By implementing the
same abstraction rule of the CU an the UI Toolkit, the EU
acts as distributed computational service, mostly used by
UI for data information reduction to quality parameter
and for the control service of the !CHAOS machine
workflow. In a naïve way, the EU instantiation on a
computational node (real or virtual) will work as a
particular computational algorithm or will act as a node
in the transfer function of a loop control one. Its
functioning is exactly the same of the CU except for the
hardware in its frontend, with ideally the same set of
methods and DPMs. So, again, the EU programmer has
only to develop the algorithm; he doesn’t need to care on
how !CHAOS fetches the input data and store the output.

Third Abstraction Layer (TAL) – Plugin Modules
This is the last interface layer connecting the external

world to the !CHAOS framework: some example are the
DDP and DPM. Even though these are hybrid application
(i.e. they are logically different to each other since their
constituents are changed as function of the different
external application in touch with), their paradigm and
low-level communication are intended to be the same. We
have developed two kind of DPM at the CU layer: one
that extends CU calls directly in C to the hardware
attached to the host computer, the other very interesting
CU extension works with its mirrored DPM created in
LabVIEW®. The communication channel between the two
sides of this DPM is provided by means of Unix pipes
(tested on Linux and MAC), now under test. Pointing out
that the CU extensions are different because of different
prototypes and third party software, these TAL elements
aim to make easy the designing of the instruments driver.
The programmer has only to know the DS and the

algorithm it has to develop, using the external side of the
DPM that extends the previously described six basic
methods. For the LabVIEW® example, he only needs to
create six different VIs starting from templates that will
include sub-Vis for serialization of LabVIEW data
structures into BSON strings and vice versa we developed
for this purpose. For the DPP, we wants to perform the
same step, preferring the low level communication
approach between The !CHAOS side and the external
application one, as used in the DPM.

TEST OVERVIEW
In the previous articles we already mentioned that some

!CHAOS components were under test in existing CS
infrastructure. The CS presently driving the DAΦNE
accelerator has been used for testing one of the core
components of !CHAOS: the live-data caching. The
MEMCACHED server, running on a Linux box with 100
Mbps Ethernet network interface, stores the data of the
ICE (Ion Cleaning Electrodes) consisting of a data
structure of 64 bytes. The dataset is pushed by the front-
end controller with a frequency ~ 100 Hz. In one year of
continuously running test, we report no fault on
MEMCACHED. We have planned to extend the first
operative version of !CHOAS to the Beam Test Facility
area in the DAØNE infrastructure. The test also
confirmed the independency of the performance on the
number of fetching consoles (up to 7) and the
MEMCACHED server CPU load never exceeded 1% and
a memory usage of ~ 0.1%. Similar tests have been
performed at SPARC where a MEMCACHED server is
used for communication between components of the CS
by means of a common dataset area. The first class of
object migrated to the MEMCACHED server was the
SPARC camera subsystem. We chose this class of
elements because of its very large dataset; each camera is
at least 640x480 with 8 bit. After this first installation we
made some speed tests demonstrating an increase of the
transfer speed compared to the previous client/server
communication scheme. Moreover, they confirmed that
data transfer is independent from the number of client
consoles fetching the image from the MEMCACHED
server. The success of this installation convinced us to
adopt also for the rest of SPARC elements this
communication solution that uses MEMCACHED as data
server. Currently we are in stable running condition with
the upgraded system.

REFERENCES
[1] G. Mazzitelli et al., “High performance web

applications for particle accelerator control systems”
IPAC’11, WEPC142, pp.2322.

[2] L. Catani et al., “Exploring a new paradigm for
accelerators and large experimental apparatus control
systems” ICALEPCS’11, pp.1557.

[3] http://bsonspec.org/; http://www.json.org/
[4] http://memcached.org/
[5] http://www.mongodb.org/

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR003

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

3971 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

