
 

Abstract 
CERN’s LHC Injection chain Upgrade (LIU) involves 

a revision of the Proton Synchrotron Booster dump, 
which was designed in the 1960’s to cope with beam 
energies reaching 800 MeV and intensities of 1e+13 
particles per pulse. Thermo-mechanical studies 
highlighted the need for an upgrade of the dump, so that it 
is capable of withstanding energies in the order of 2 GeV 
and intensities up to 1e+14 particles per pulse. This paper 
proposes a new design of the dump in the light of various 
constraints and choices such as the geometry, materials 
and the integration of the required cooling system. 
Further topics discussed include the strategy for 
dismantling the old device, which has been continuously 
irradiated for almost 40 years and presents a difficult 
access. Therefore, a detailed ALARA procedure is being 
prepared in order to carry out the upgrade works in the 
area. 

INTRODUCTION 
The Proton Synchrotron Booster (PSB) will be 

upgraded, to make it able to withstand and accelerate the 
beam provided by the upcoming Linac4 at CERN. Table 
1 summarises the current and upgraded beam parameters.  

The PSB beam dump has to cope nowadays with much 
higher energies and intensities than the ones it was 
initially designed for (800 MeV, 1e+13 p+/pulse). 
Moreover, the active cooling system suffered a failure 
several years ago, and the age of the dump strongly 
suggests a renewal.  

In this paper, some results of the numerical analyses of 
the still-in-use PSB beam dump are presented, confirming 
the need for a replacement. The conceptual design of the 
new dump and the procedure for the removal of the old 
dump and shielding are also described. 

 

Table 1: PSB beam parameters 

Parameter Unit 
Current 

Beam 
Upgraded 

Beam 

Extraction energy E0 GeV 1.4 2 

Pulse length  s 1.66 1.66 

Pulse period T s 1.2 1.2 

Average current Ī ܫ ̅ = ∗ܫ ∙ ߬/ܶ 
mA 4.27E-3 1.335E-2 

Peak current ܫ∗ mA 3088.2 9650.6 

Average Beam 
Power ഥܹ = ܧ ∙ ܫ  ̅ kW 6 26.7 

 Max. Beam Size H x V cm 1.64 x 5.61  1.46 x 5.16 

Min. Beam Size H x V cm 0.42 x 0.81 0.37 x 0.71 

STATUS AND MOTIVATION FOR 
CHANGES 

The present beam dump is a cylindrical object, 22 cm 
in diameter and 48.3 cm long. It consists of a collection of 
13 Fe37 steel-disks, assembled in decreasing order of 
thicknesses, from 100 mm to 2 mm, with a constant 4 mm 
gap in between them. 

 A single, contiguous Stainless Steel cooling pipe runs 
through these disks, forward and backward six times at 
different, radially spread out locations, as seen on Fig.1. 

The dump is located at the end of the BTM beam line, 
after the PSB extraction line, and connected upstream to 
the beam pipe. More than four meters of beam pipe and 
the dump core are placed in a 5 meter-cavity inside a wall 
and shielded with concrete blocks (Fig.2). This shielded 
cavity is open to the atmosphere, so that air can freely 
flow inside it, around the dump and in between its disks, 
hence allowing natural convection. Nowadays, this is the 

 

Figure 1: Drawing of the current beam dump core. 
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cooling efficiency, provided that radioactive activation of 
water is kept within acceptable limits. Also, to improve 
cooling reliability, a redundant water circuit is 
implemented.  

A solution with forced air cooling was proposed but 
then discarded, due to the impossibility of having a closed 
air loop with enough flow in this particular area of the 
tunnel. 

Choice of Material 
Based on the principles of simplicity and low-

maintenance, the dump core was chosen not to work 
under vacuum. At the same time, mechanical connections 
are preferred over welding, while the choice of material 
was directed to basic metal compounds, for which 
thermal and mechanical properties are well known and 
their workability and behaviour in extreme conditions 
(such as ionizing radiation) is well assessed.  

Concerning the choice of material, both thermal 
conductivity and mechanical strength need to be 
maximised. On the other hand, the induced activation at 
the required energy has to be minimised. At this regard, 
low density, low Z metals are preferred for the inner part 
of the core, where the beam hits directly. As for the outer 
part, good thermal conducting and higher density metals 
should be used, in order to optimise heat extraction and 
possibly have a first shielding of the developing particle 
cascade. Aluminium alloys were distinguished as good 
candidate materials for the inner core. Stainless Steel and 
Copper alloys were identified as suitable for the outer 
core, mainly due to their good thermal properties and high 
ductility, which help to keep the stress levels low. 

DISMANTLING STRATEGY  
The procedure to dismantle the old beam dump is being 

defined following the ALARA approach [10], i.e. in such 
a way that the dose absorbed by the working personnel is 
kept ‘As Low As Reasonably Achievable’ at all times. 
This implies the creation of a dose rate map of the area 
where the works will be performed, a detailed list of the 
actions taken, with the time required for each one of 
them, a planning of the number of workers executing the 
operations and the total estimated dose absorbed by each 
person. 

Furthermore, the personnel involved has to be trained 
for the tasks they will perform, a video of the whole 
operation will be recorded and the dose absorbed by the 
personnel will continuously be monitored, in order to 
minimise radiation exposure and avoid unnecessary risks.  

Due to constraints in space in the area and in order to 
facilitate site access and the disposal task, it is necessary 
to temporarily dismantle part of the BTM and BTY beam 
lines in front of the dump cavity, as well as some other 
equipment. Accordingly, proper transport arrangements 
are foreseen to access the area and special tools are being 
designed and manufactured to pull out the old device and 
to take care of its disposal. Due to their activation, it is 
planned to dismantle and dispose of the dump core, the 

segment of beam pipe attached to it, as well as the 
concrete shielding around. 

In order to proceed with the works, different scenarios 
have been considered, each accounting for a different 
possibility of a failure while performing a particular task. 
It is important to keep abreast of possible risks and 
maintain readiness for action, should any problems be 
encountered. 

In summary, the main issue regarding the dismantling 
works constitutes the high potential dose rates, caused by 
40 years of continuous irradiation of the dump core. To 
properly prepare the ALARA procedure, simulations of 
the region are being performed, in order to estimate dose 
rates in several locations and at different times. These 
simulations will be then validated by in-situ 
measurements done by the Radioprotection Group before 
any dismantling work could start. 

CONCLUSIONS 

In this paper, the constraints and requirements 
regarding the design of the new beam dump for the 
upgraded Proton Synchrotron Booster at CERN have 
been presented. Beam parameters - such as beam energy, 
intensity and size - as well as the geometry of the device, 
the integration of a cooling system and the choice of 
materials have been carefully taken into account. 

The procedure for the dismantling and disposal of the 
old beam dump has also been approached.    
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