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Abstract 
A superconducting RF cavity is well modeled as a linear 
two input two output (TITO) system in the 
Inphase/Quadrature (IQ) coordinates and is both 
controllable and observable. Perturbation of cavity 
resonant frequency, due to beam loading or Lorentz force 
detuning, can be modelled as a matched uncertainty.  The 
cavity field of a TITO cavity system with a matched 
uncertainty is controlled by output feedback or state 
feedback, whose performance function, given by the error 
bound, is made arbitrarily small. Because of the building 
cost of the RF system, the single RF source (single 
klystron)-multicavity structure is widely used. This 
structure is described as a parallel composite of multiple 
TITO cavity systems, resulting in a two input and two 
output multi-state system, where each output is a vector 
sum of multiple individual cavity I/Q components.  The 
resulting control problem is not a simple extension of the 
single TITO system.  Though the composite vector-sum 
system is controllable, the matched uncertainty of the 
TITO cavity system caused by cavity detuning becomes 
mismatched. Consequently, although the vector-sum error 
bound of the system output may be made arbitrary small, 
the resulting controller is blind to cancelling cavity field 
errors, which occur if two cavities are offset in opposite 
directions. 

INTRODUCTION 

     A RF cavity is well modelled as a linear two input two 
output (TITO) system in the Inphase/Quadrature (IQ) 
coordinates and is both controllable and observable [1], 
[2].  When there is a time invariant or time varying 
frequency detuning caused by Lorentz force, 
microphonics, or beam loading, the nominal system state 
matrix is changed. The feedback control system design 
compensating for this perturbation plays a crucial role in 
accelerator field control.  Because of the building cost of 
RF systems, the single RF source (single klystron)-
multicavity structure  is widely used [3], [4], [5], [6].  
This structure is described as a parallel composite of 
multiple TITO cavity systems, resulting in a two-input 
two-output multi-state system, where each output is a 
vector sum of multiple individual cavity I/Q components.  
The resulting control problem is not a simple extension of 
the single TITO two-state system. Though the composite 
system is controllable, the matched uncertainty of the 
TITO cavity system caused by cavity detuning becomes 
mismatched. Consequently, although the vector-sum error 
bound of the system output may be made arbitrary small, 
the resulting controller is blind to cancelling cavity field 
errors, which occur if two cavities are offset in opposite 
directions. In the following, a parallel composite system 

of two TITO cavities is studied. A robust state feedback 
control law is proposed and the closed loop system 
performance is investigated. Simulation results 
demonstrate a small vector-sum error while individual 
cavity performance is poor. 
 

CONTROL OF TITO MULTI-STATE CAVITY 
SYSTEM WITH MISMATCHED UNCERTAINTY 

 
     Consider a parallel composite system which is 
composed of two TITO cavities connected in parallel. The 
first thing that must be checked is the controllability of 
the system.   In many cases, the state uncontrollability 
does not imply the input-output controllable in a practical 
sense, since the uncontrollable states are not of concern 
from the perspective of the system behavior or are not 
practically important.  Specifically, when the system is 
stable, the control purpose is mostly focused on the output 
not the system state, and so the state controllability is not 
a real concern [7].   The vector-sum control which is the 
widely used output feedback control for the cavity field 
control can be understood in this context.   In the parallel 
composite system of two cavities, if the eigenvalues of 
the two cavities are folded (overlapped), then, the 
composite system is state uncontrollable [8], [9].  In this 
case, though the composite system is stable, because there 
are state uncontrollable modes, the characteristics of the 
individual systems, such as rise and settling time, cannot 
be decided properly by the output feedback controller of 
the vector-sum control. 
     When there exists uncertainty in the composite system, 
whether the states is controllable or not, the tolerance of 
the system states to the uncertainty must be considered. 
Even if the output behavior of the system is within the 
scope of desired performance, state behavior must be 
contained to within the design scope. 

The parallel composite system of two RF cavities is 
expressed as the two-input, 4-state, two-output system:
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For the linear TITO uncertain system of a cavity, the 
uncertainty is matched.  When an uncertain TITO cavity 
system is connected in parallel with another uncertain 
TITO cavity system, the uncertainty becomes mismatched 
[10], [11]. That is, the uncertainty is not in the range of 
the input matrix .B  We decomposed the uncertainty into 
the sum of matched and unmatched components by 
projecting the uncertainty to the range of the matrix B ,  
for    

          )()()(    ABBIABBA ,   (4) 

Here,  B  is the pseudo inverse  of the matrix  .B  Note 

that    .0  BBIBB   For the decomposition of the  

uncertainty as Eq. (4), it is assumed that there exist 
nonnegative symmetric matrices, F  and  H  
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Consider the nominal state equation 
 BuAxx                                        (7) 
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Let the desired output be rry  . In steady state, the 

corresponding state and input, ,rx  ,ru can be obtained by 

solving    
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Since  rry   is bounded, there exist bounded sets xr  

and ur , such that we can define   

 xrrr xxAB  
 ,,)(max1   (10) 
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Theorem For positive constants 1 , ,2  and a positive 

definite matrix Q , if the Riccati equation 
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has positive definite solution P ,  then the control law 
  r
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where  is a positive constant, makes the state of system 

Eq. (1), (2) uniformly bounded. 
Outline of Proof)   Definite a Lyapunov function 
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Then the time derivative of ),( teV  is 
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Riccati equation, the above inequality is reduced to 
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Eq. (15)  shows that the bound is made small by choosing 
the design parameters 3  and 4  properly.  By the 

definition of the Lyapunov Function, the error bound is 
given by 
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This proves the theorem. 
     Now consider two SNS superconducting cavities 
connected in parallel. The nominal system matrices are   
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For a given output set point  Try 4620.49493.8  , the 

state set point and input set point are obtained from Eq. 
(9).   

 Trx 462.49493.8462.49493.8   

 Tru 4626.49507.8  

The Lorentz force detuning is the main frequency 
detuning and other detuning are ignored. Lorentz force 
detuning change their values within the ranges 

  sec]/[07001 rad     sec]/[08382 rad  

for a RF pulse period. The bounds Eq. (10) are obtained 
as ,4583.41  .21.9842   In order to find out the 

dependence of the error bound e upon  , an 

optimization based on gridding of the domain 2  and the 

domain 4 was run for several values of  .  Table 1 

shows the result for  values of  ,137.27 IQ  ,21   

.2 13     With )64724,34986,2,1000(),,,,( 4321  , 

the Riccati equation solution is and Figure 1 shows the 
simulation result. 
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CONCLUSION 

     For output tracking performance, state controllability 
and input-output controllability are not enough. The 
matching condition should be satisfied for practical 
tracking performance. In the case where the single RF 
power source feeds the single cavity, the matching 
condition is satisfied. Therefore, the state and output 
errors can be made arbitrarily small under the uncertainty 
caused by the frequency detuning of the RF cavity. When 
the single RF power source feeds two cavities, the parallel 
composite system, the system becomes mismatched. In 
this case, as shown in the simulation, the output tracking 
performance may be achieved. However, the states of the 
individual cavities are not constrained to a satisfactory 
boundary and therefore the single RF source-multi cavity 
topology is not desirable. This is true for other controller 
structures such as PID, H infinity, etc., unless local 
feedback controllers are applied to each cavity. 
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Table 1: Optimization Parameters 

 

 

 

 
Figure 1: Cavity field I and Q errors of each cavity (top), 
vector sum output error (2nd), error norm of cavity field I 
and Q errors(3rd), and output error norm(bottom). 
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optimal

e  optimal2  
 optimal4  

    10 1.00750 32953   60963 
  100 0.97813 34817   64410 
1000 0.97521 34986   64724 

  1500 0.97510 34992   64735 
2000 0.97505 34993   64739 

  2500 0.97502 34996   64743 
  3000 0.97500 34998   64746 
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