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Abstract
The fundamental TM wave can be guided as a surface

wave along a single dielectric coated wire. Such a setup is
known as a Goubau line. Close to the wire this TM wave re-
sembles closely the radial electric and azimuthal magnetic
fields of a charged particle beam moving in an accelera-
tor. Hence, it can be used to test beam instrumentation in
the workshop. We introduce the principle, discuss bene-
fits, and compare measurements of a beam instrumentation
device performed with a Goubau line to measurements per-
formed with a standard bench testing setup.

INTRODUCTION
A novel technique for bench testing of beam instrumen-

tation has been proposed and successfully applied to BPMs
some time ago by J. Musson et al. [1, 2]. The idea is to ex-
cite an electromagnetic surface wave which is guided by
a single wire surrounded by air without the need for an
outer conductor. This wave consists of a fundamental TM
mode closely resembling the electromagnetic fields around
a beam of charged particles. Such a setup is known as
Goubau line and has found previous applications in signal
transmission [3].

Recently, we have setup a Goubau line at Bergoz Instru-
mentation using cones provided by J. Musson, JLab. First
measurements have been presented at BIW12 [4]. In this
paper we focus on a description of the theoretical basis.

ELECTROMAGNETIC SURFACE WAVES
A first evaluation of electromagnetic surface waves trav-

eling along wires of finite conductivity has been performed
more than a century ago by A. Sommerfeld [5].

Starting from Faraday’s law of induction and Ampère’s
law,

−∂B⃗

∂t
= ∇× E⃗ and µJ⃗ + µϵ

∂E⃗

∂t
= ∇× B⃗ ,

he made only two assumptions. The first is azimuthal sym-
metry ∂

∂ϕ = 0, which means the evaluation is valid only
for straight and round wires. The second is the limitation
to TM modes, i.e. Eϕ = 0, which is acceptable since
one expects a general solution that contains the solution
for a perfect wire, i.e. a TEM mode with radial electric
and azimuthal magnetic field, as a special case. In [6]
Hondros has shown that indeed this assumption is justified
since only the fundamental TM mode can travel with low
losses along a single wire while higher order TM and all
TE modes are strongly damped.
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What remains are differential equations for the radial
electric, the azimuthal magnetic and the longitudinal elec-
tric field components:

µσEr + µϵ
∂Er

∂t
= −∂Bϕ

∂z
∂Bϕ

∂t
=

∂Ez

∂r
− ∂Er

∂z
(1)

µσEz + µϵ
∂Ez

∂t
=

1

r

∂rBϕ

∂r

with J⃗ = σE⃗, i.e. Ohm’s law for linear, isotropic media.
Note that the longitudinal component is not assumed to

vanish on the wire surface since this would only be justi-
fied on the surface of a perfect wire. As Sommerfeld has
shown imperfections allow certain phenomena which are
not present in perfect cases.

Introducing a harmonic wave of propagation constant h
traveling in z-direction, i.e

Er = Er0 ei(ωt−hz)

Bϕ = Bϕ0 ei(ωt−hz)

Ez = Ez0 ei(ωt−hz) ,

into Eqns. (1) leads to a 0th-order Bessel differential equa-
tion

Ez0 = r2
∂2Ez0

∂r2
+ r

∂Ez0

∂r
+ r2γ2Ez0 (2)

and the relations Er0 = h
iγ2

∂Ez0

∂r , Bϕ0 = k2

iωγ2
∂Ez0

∂r with
γ2 = k2−h2 and k2 = ω2µϵ− iωµσ. k is the propagation
constant of a free wave in a medium with permeability µ,
permittivity ϵ and conductivity σ.

The solution of Eqn. (2) can be any linear combination
Z0 of the 0th-order Bessel functions with amplitude factor
A and argument γr, i.e. AZ0(γr):

Er =
iAh

γ
Z1(γr) e

i(ωt−hz)

Bϕ =
iAk2

ωγ
Z1(γr) e

i(ωt−hz) (3)

Ez = A Z0(γr) e
i(ωt−hz)

since ∂Z0(γr)
∂r = −γ Z1(γr).

Eqns. (3) are valid inside the wire, outside the wire and
even in a surface layer which might surround the wire.
Sommerfeld limited his study to wires with finite conduc-
tivity. Harms [7] and Goubau [3] generalized his results
to wires with dielectric surface layers and surface corru-
gations. Since the boundary conditions differ also the so-
lutions consist of different linear combinations of Bessel
functions. h, on the other hand, is the same everywhere.
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For bench testing of beam instrumentation we are only
interested in the field configuration outside the wire. First,
these fields must vanish for r → +∞. Second, the wire
will be surrounded by air and k ≈ ω

√
µ0ϵ0. The phase

velocity of such a wave is speed of light. Any guided wave
must have a lower phase velocity and its propagation con-
stant h is larger than k. Hence, γ and the argument γr of
the Bessel functions Z0 and Z1 are imaginary.

Assuming γ to be a positive imaginary number the Han-
kel functions Z0 = H

(1)
0 and Z1 = H

(1)
1 , i.e. the

Bessel functions of the third kind, show the proper behav-
ior1. For small arguments H

(1)
0 (γr) ∝ − log(γr/2) and

H
(1)
1 (γr) ∝ 1/(γr). That means, near the wire Er and Bϕ

are proportional to 1/r while Ez decays slower. For large
arguments H(1)

0 (γr) ∝ e−γr and H
(1)
1 (γr) ∝ e−γr. That

means, further away from the wire Er, Bϕ and Ez decay
exponentially. Hence, the power is confined to a limited
distance and the wire acts as a wave guide.

Up to which distance 1/r remains a valid approximation
for Er and Bϕ depends on γ, i.e. wire and surface proper-
ties. Of course, for a perfect wire 1/r will be fulfilled ex-
actly up to infinite distance. For all imperfect cases γ needs
to be calculated from the fact that on the wire surface, i.e.
at r = rw, Ez and Hϕ = Bϕ/µ must be continuous:(

Ez

Hϕ

)
outside

=

(
Ez

Hϕ

)
surface

. (4)

The left side is given by Eqns. (3) with Z0 = H
(1)
0 and

Z1 = H
(1)
1 . The right side is given by Eqns. (3) with

Z0 = J0+bY0 and Z1 = J1+bY1. b is defined by boundary
conditions. For example, assuming an uncoated wire of fi-
nite conductivity would lead to b = 0, whereas for a coated
wire with infinite conductivity b = −J0(γsrc)/Y0(γsrc)
(γ2

s = k2surface − h2 and rc = radius of conductor) [3].
In general Eqn. (4) cannot be solved analytically. Further

discussions and approximate solutions for different cases
were given in [3, 5, 6, 7]. Today numerical solutions are
most convenient for all practical applications. Using stan-
dard enamel coated copper wires the imaginary component
of h is found to be very small. That means, the wave is
truly propagating and just weakly damped.

The last variable to be evaluated is the amplitude A. It is
connected to the power of the incoming signal and can be
calculated by equaling the time-averaged input power P̄in

to the time-averaged power traveling along the Goubau line

P̄in = P̄G =
1

2

∫
S

Re(E⃗ × H⃗∗) dS . (5)

We are only interested in cases which are not too
strongly distorted from the perfect case. In these cases by
far the largest power fraction is traveling in the fields out-
side the wire and we can perform the integration in Eqn. (5)

1One could also assume γ to be negative imaginary and use H
(2)
n for

the solution. Equivalent solutions can be found if the modified Bessel
functions Kn are used.

between rw and +∞:

P̄G ≈ 1

2

∫ +∞

rw

∫ 2π

0

Er H∗
ϕ dϕdr

= π
AA∗ k2h

ωµ0γγ∗ r2w

(
2

γrw
H

(1)
0 (γrw)H

(1)
1 (γrw)

−[H
(1)
0 (γrw)]

2 − [H
(1)
1 (γrw)]

2
)

. (6)

Another way to approximate A is to equal on the wire
surface the Bϕ given by Eqns. (3) to the Bϕ on the surface
of a perfect wire with the same radius:

iAk2

ωγ
H

(1)
1 (γrw) ≈

Iµ

2πrw

⇒ A ≈ I

2πrw

ωµγ

ik2
1

H
(1)
1 (γrw)

. (7)

In practice the current I can be calculated using Eqns. (6)
and (7). The input power P̄in depends on the way the sur-
face wave is excited and can be extracted, for example,
from reflection measurements.

Finally, in good approximation the fields outside the wire
can be written as:

Er ≈ I ei(ωt−hz)

2πrw

h

ωϵ

H
(1)
1 (γr)

H
(1)
1 (γrw)

Bϕ ≈ I ei(ωt−hz)

2πrw
µ

H
(1)
1 (γr)

H
(1)
1 (γrw)

(8)

Ez ≈ I ei(ωt−hz−π/2)

2πrw

γ

ωϵ

H
(1)
0 (γr)

H
(1)
1 (γrw)

.

The similarity of Er and Bϕ to the fields around a charged
particle beam is obvious. The Hankel functions lead only
to a modified radial evolution in the aforementioned way.

Fig. (1) shows examples of the fields versus distance for
1 GHz and 10 GHz signals. For bench testing of beam
instrumentation the field distribution has to maintain its 1/r
proportionality over the full aperture of the device under
test. Wire and surface properties have to be adjusted to
achieve this up to the highest frequency of interest.

Figure 1: Radial evolution of field strengths for 1 GHz and
10 GHz assuming wire diameter = 200 µm, enamel coat-
ing thickness = 20 µm and average current = 1 A.
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GOUBAU LINE
The surface wave needs to be properly excited. A simple

possibility is to use a tapered cone which matches the mode
in a coax cable, i.e. a quasi-TEM mode, to the fundamental
TM mode on the wire. Such a cone can also be used to
capture the TM mode and re-feed it into a coax cable. To
reduce reflections the cones and the conductors inside have
to follow a proper impedance profile. These cones and the
wire form the basic setup of a Goubau line (Fig. 2).

Figure 2: Sketch of a Goubau line for bench testing.

MEASUREMENTS AND DISCUSSIONS
We have set up a Goubau line using aluminium cones

provided by J. Musson from JLab2. The wire has a diam-
eter of 0.9 mm and is enamel coated. To reduce reflec-
tions the shape of the conductors inside the cones was cal-
culated to achieve an impedance evolution of the Klopfen-
stein type [8]. They have been assembled from brass tubes
of 1 - 7 mm diameter.

The response of a current transformer (CT) has been
measured on our Goubau line and in our standard setup,
a so called spider which is a structure terminated by 50 Ω
(Fig. 3). The CT response on the Goubau line has been
normalized to the 50 Ω case using Eqns. (6) and (7).

Figure 3: CT response in a spider (blue) and CT response
in a Goubau line normalized to a 50 Ω environment (red).

Around 1 GHz the match between the two measurements
is very good. And also around 3 GHz the match is quite
good. That means, the notch around 2 GHz in the spider
measurements is an artifact of the measurement setup. The
CT itself works well. It is well- known that these artifacts

2The cones where originally manufactured by S. Rubin from Rubytron
Inc. who provided them to JLab for Goubau line tests.

appear at high frequencies leading to false interpretations
of the performance of the device under test. Improving this
situation is the main motivation for studying the Goubau
line.

These measurements and additional reflection measure-
ments of the Goubau line allowed us to identify standing
waves between the cones as the main perturbation of the
CT response measurements [4]. They are the cause for the
equidistant resonances seen in Fig. 3 and are a result of too
strong reflections by the cones, i.e. imperfect geometries.

SUMMARY
In view of an application to bench testing of beam instru-

mentation we have reviewed the theory of electromagnetic
surface waves traveling along straight, round wires. These
are non-radiating waves which are bound to the wire due
to imperfections, e.g. finite conductivity, surface coatings
or corrugations. They consist of a weakly damped fun-
damental TM mode. Near the wire this mode resembles
closely the fields around a beam of charged particles. Thus
a Goubau line can indeed be used as a tool for bench testing
of beam instrumentation devices.

A first Goubau line has been assembled and tested with
very promising results. We could identify signal reflections
as a single cause for the strongest of the observed perturba-
tions. To reduce these reflections we will improve the cones
and their inner conductors. This will increase power trans-
fer to the TM mode and more importantly reduce standing
waves between the cones.
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[6] D. Hondros, “Über elektromagnetische Drahtwellen”, Ann.
Phys. 335, 1909.

[7] F. Harms, “Elektromagnetische Wellen an einem Draht mit
isolierender zylindrischer Hülle”, Ann. Phys. 328, 1907.

[8] R.W. Klopfenstein, “A Transmission Line Taper of improved
Design”, Proc. of the IRE 44, 1956.

MOPPR006 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

782C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T03 Beam Diagnostics and Instrumentation


