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Abstract 
Innovative muon beam concepts for intensity-frontier 

experiments such as muon-to-electron conversion are 
described.  Elaborating upon a previous single-beam idea, 
we have developed a design concept for a system to 
generate four high quality, low-energy muon beams (two 
of each sign) from a single beam of protons.  As a first 
step, the production of pions by 1 and 3 GeV protons 
from the proposed Project X linac at Fermilab is being 
simulated and compared with the 8-GeV results from the 
previous study. 

INTRODUCTION 
We have been developing design concepts for future 

high-quality muon beam facilities driven by proton beams 
from the Fermilab Project X [1] linac. A variety of muon 
beams will be needed; one particular focus of our 
activities has been to provide a stopping negative muon 
beam for a muon-to-electron conversion experiment. 
(Muon to electron conversion is a charged-lepton flavor-
changing process in which a muon converts directly to an 
electron in the field of an atomic nucleus without other 
particles being emitted. It is predicted to occur in some 
theories of physics beyond the standard model.) 

A conversion experiment called Mu2e [2] has been 
approved and is currently being developed. It will use 
proton beam accelerated by the Fermilab Booster to 
generate muons stopping in an aluminum target. The 
proton energy is 8 GeV and the beam power is expected 
to be about 8 kW, corresponding to 1 A of average 
proton beam current. The muon beam concept for Mu2e is 
similar to that of previously proposed (but not executed) 
experiments called MELC [3] and MECO [4]. 

Another conversion experiment following Mu2e will be 
an important experiment in the Project X era. If a 
significant signal is detected in Mu2e, then interest will 
turn to detecting conversion on one or more higher-Z 
nuclei such as gold. If, on the other hand, a convincing 
signal has not been detected, then the emphasis will be on 
achieving higher sensitivity. In both cases, a new 
initiative will be required because the design of the Mu2e 
beam and detector cannot readily be extrapolated to 
achieve much more demanding requirements. It is 
obviously desirable that any new initiative should be able 
to cover both possibilities, providing greater sensitivity as 
well as the ability to use higher-Z stopping targets 
effectively. 

Project X is crucial for achieving the goals of the 
follow-on experiment. The baseline design for Project X 
includes a 3-GeV CW SRF linac followed by a pulsed 

linac for further acceleration to 8 GeV. Ideas for staging 
Project X have recently been developed; the first stage 
would be a 1-GeV CW linac. The design average beam 
current in the CW linac is 1 mA, corresponding to beam 
powers of 1 and 3 MW at 1 and 3 GeV, respectively. 
Beam power of about a megawatt can potentially provide 
about two orders of magnitude increase in sensitivity for a 
muon to electron conversion experiment compared to the 
Mu2e experiment at 8 kW. 

The experiment requires beam bunches spaced by about 
a muon lifetime. The lifetime of a stopped negative muon 
in gold is less than 100 nsec, about 10 times shorter than 
that in aluminum. Project X includes a nimble chopper 
that will allow delivery of arbitrary bunch timing patterns, 
an important capability for these kinds of experiments. 

CONCEPT USING DIPOLE AND WEDGE 
Previously we developed a complete conceptual design 

for a stopping muon beam generated by an 8-GeV proton 
beam [5]. Figure 1 illustrates the concept. The proton 
beam produces pions in a target at the face of a uniform 
dipole field. A 180-degree bend generates a momentum-
dispersed horizontal focus, where the pions encounter a 
wedge that renders them roughly mono-energetic. Figure 
2 shows the simulated performance of the dipole and 
wedge monochromator. That system is followed by a 
decay volume matching into a helical cooling channel [6] 
that reduces the beam energy as it cools the muons before 
the stopping target.  
 

 Figure 1: Layout of Dipole and Wedge (Cu), momentum 
dependent HCC, and the matching section.  The blue line 
indicates where π− from the target are generated.  The 
green line shows the location of a circular aperture 
immediately behind the wedge. 

Subsequently we realized that RF cavities should be 
used for the final stage of deceleration to the stopping 
target in order to avoid the severe longitudinal heating 
that occurs in absorbers at low energy. 

The same dipole-plus-wedge targeting and pion 
collection concept can be used for the simultaneous 
generation of four mono-energetic pion beams, namely 
positive and negative beams produced forward and 
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