
OPTIMAL FAST MULTIPOLE METHOD DATA STRUCTURES

S. Abeyratne^, S. Manikonda*, B. Erdelyi*,^

^Department of Physics, Northern Illinois University, DeKalb, IL 50115, USA
*Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

The Fast Multipole Method (FMM) has been identified
as one of the ten most significant numerical algorithms
discovered in the 20th century. The FMM guarantees
finding fast solutions to many problems in science, such
as calculating Coulomb potentials among large number of
particles by reducing memory footprint and runtime while
attaining very high accuracy levels. One important
practical issue that we have to solve in implementing a
FMM algorithm is organizing large amounts of data, also
called data structuring. The non-adaptive FMM is
appropriate when the particles are uniformly distributed
while the adaptive FMM is most efficient when the
distribution is non-uniform. In practice, we typically
encounter highly non-uniform 3D particle distributions.
This paper summarizes our implementation of a 3D
adaptive FMM algorithm data structure setup for non-
uniform particle distributions.

INTRODUCTION
If the Coulomb potential of N particles is evaluated

directly, it requires on the order of O(N2) operations since
each pair of particles in the system needs to be taken into
account. As the number of particles increases, the
computational cost increases rapidly. The FMM
overcomes this quadratic complexity [1]. The FMM has a
broad range of applications in Beam Physics such as
space charge, electron cooling and electron cloud effect.
The computational cost of the FMM has two major parts:
data structuring and potential calculation. This paper
discusses only the data structure and seeks a method for
an efficient implementation of the FMM. Consequently,
the algorithm used to implement the data structure needs
to be efficient. The efficiency of an algorithm is
determined by its cost or complexity, which comes in two
forms, space complexity and time complexity. The space
complexity is a measure of memory usage and the time
complexity is a measure of speed. Hence, the key
challenges in the implementation of FMM are overall
memory management and efficient acceleration of
computation. In our analysis, we generated several data
sets from arbitrary distributions, namely normal (or
Gaussian) and uniform distribution, to measure peak
runtime-memory usage and runtime.

Adaptive FMM and non-adaptive FMM, also known as
regular FMM, are the two major types of FMM [1]. The
notion of adaptation is inevitable in a setup of non-
uniform distribution. In adaptive FMM, the subdivision of
boxes with particles continues only if a particular box
does not meet a precondition. On the other hand, in non-
adaptive FMM, all boxes are subjected to recursive

subdivision until the number of levels roughly becomes
log8N. There are some other adaptive FMM algorithms,
where the precondition is parameterized by a user defined
value, s, which is the average number of particles in the
finest boxes [2, 3, 4]. The precondition in this paper is that
the maximum number of source particles in the
neighbourhood of a given target particle (also known as a
receiver or evaluation point) should not exceed a user
specified number, q. Therefore, the maximum level
reached after hierarchical subdivision is governed by q.
We measured the peak runtime-memory usage and
runtime for different q, N, and distributions.

The primary data structure we used to implement the
adaptive FMM algorithm was an octree (or quadtree in
2D). An octree is a tree data structure in which each
internal node has eight children; it is typically used to
partition a 3D space. Each node of the octree represents a
box. Establishing an octree to save all necessary
information makes the code run fast.

Since the boxes in the neighbour list of any given box
are of the same size (or at the same level) they can be
treated independently. Consequently, in this data
structure, the error estimation becomes much easier. Also,
this data structure works perfectly if the target particles
are identical to the source particles or independent set of
particles. Another crucial point of this algorithm is that it
is fully adaptive in terms of both source and target
particles.

By writing this code in C++ we exploit the portability
property of C++. In addition to subsuming optimizers in
C++, we optimized this code extensively. We used some
non-basic operations such as sorting (used the fastest
known sorting algorithm in practice, quicksort) and binary
searching to make the code run fast. Hence, the algorithm
presented in this paper is optimal since it is fast and uses
dynamic memory allocation.

ALGORITHM
The first step in implementation of adaptive FMM is

space partitioning. We start with a space, also known as
the computational domain, large enough to contain all
source and target points of the simulation.

In the 2D setup, this space is a square divided into four
equal sub-regions (quadrants) and form quadtrees. In the
3D setup, this region is divided into eight equal sub-
regions (octants) and form octrees. These sub-regions are
known as children of the original region or the parent. In
general, the cube (or the square in 2D) becomes the root
of the tree, which is subsequently subdivided into 2dl
congruent boxes with equal volumes and side length d/2l,
where d and l are the side length of the root box and the

MOPPC093 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

352C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

Figure 1: Variation of runtime with particle number, N. Figure 2: Runime measured for different distributions.

level, respectively. Therefore, the structure is a tree with a
branching factor equal to 2d, where d is the
dimensionality.

Each particle is identified by its coordinates (x, y, z in
3D) and belongs to different boxes at different levels. In
case of 3D, each box in the octree is uniquely identified
by its universal index (n, l) where n and l are the Morton
index and the level of the box, respectively [1]. The
universal index of the root box is therefore (0, 0).
The neighbourhood of a given box, B, is the set of
boxes that shares at least one common boundary point and
is at the same level as B (the set includes box B itself). In
2D, the neighbourhood may contain up to 9 boxes and up
to 27 boxes in 3D. In addition, each box has an interaction
list (up to 27 or 189 boxes in 2D or 3D, respectively),
which consists of the children boxes of the neighbours of
its parent box, but not its own neighbours. Using the
technique of bit interleaving and deinterleaving of particle
coordinates, one can precisely determine the index of the
box at a given level [1]. The algorithm for space
partitioning has four steps.
 Step1: Divide the root box into 8 cubes (or into 4

squares in 2D) as in non-adaptive FMM until l = 2.
 Step 2: Count the number of source points, Nn, in the

neighborhood of each leaf node created in step 1.
 Step 3: If Nn ≤ q, tag these boxes as (n, 2) boxes and

stop further division. Otherwise, divide them one
more time and create (n, 3) boxes.

 Step 4: Continue step 2 and 3 on newly created
boxes in step 3 until all leaf nodes boxes have Nn ≤ q.

The process of subdivision may result in empty boxes
which do not contain any source particles or target
particles: these boxes need to be discarded.

The above four steps result in the set of target boxes
and parents of these target boxes build the D-tree, where
each level l of the D-tree contains a set of boxes (n, l)
whose Nn ≤ q. In the D-tree, all target boxes represent
leaves or ends for each branch of the tree. This D-tree is
used in the downward pass of the adaptive FMM
algorithm. The boxes in the interaction list of the each
node in the D-tree containing source particles create
leaves or nodes of a C-tree. The C-tree is built by
traversing through these nodes bottom-up and finding
their parent-child relationships. The collection of such

trees is the C-forest [1]. This C-forest is used in the
upward pass of the adaptive FMM algorithm [1]. It is
worthwhile to notice that the number of nodes of the C-
forest (at the finest level) is considerably smaller than the
particle number, N. Since the level of the box of a given
target is determined by both target and source sets, this
algorithm is fully adaptive.

PERFORMANCE ANALYSIS

Time
The measured time or runtime consists of two parts:

overhead and space partitioning. Even though both times
increase with the particle number, the overhead associated
with the management of its data, which is relatively small
and needs to be applied once for a given set of data,
dominates for fewer number of particles. As the particle
number increases the time taken for space partitioning
dominates and the runtime becomes directly proportional
to N, if N is large enough.

For a given q, the runtime increases linearly with the
particle number, N, (Fig. 1). Also, for a given N, the
runtime linearly increases as q decreases. The runtime
depends on the type of particle distribution as well. The
runtime of a normal distribution, for a given q and N, is
higher than that of a uniform distribution (Fig. 2). The
difference among runtimes, however, for different q
diminishes as N increases irrespective of the distribution.
Normally distributed sources and targets contain highly
clustered spaces, which require deeper subdivisions and
create additional levels to achieve the user specified
value, q. These additional levels contribute significantly
to the computational costs (runtime and memory).

This code was tested for data ranging from ten thousand
to 8 million particles (generated from normal and uniform
distributions) with different q values. Furthermore, it was
tested in 2D and 3D data sets. For simplicity, we have
shown the results for 3D and normal distribution.

Memory
Peak runtime-memory usage also shows (Fig. 3) the

same trend as time. Memory entails some overhead
(storing the min/max value of the particle coordinates etc.

Proceedings of IPAC2012, New Orleans, Louisiana, USA MOPPC093

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-115-1

353 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

within the octree data structure) inherited to any size of
particle number. As the particle number becomes larger,

Figure 3: Variation of peak runtime-memory (measured
using Valgrind 3.7.0) with particle number, N.

however, memory associated with overhead becomes less
dominant.

As the number of particles increases, generated from
normal distribution as well as uniform distribution, the
recursive hierarchical subdivision creates more and more
nodes, which requires more memory to store them.

Table 1: Runtime measured for normally distributed
particles in 3D

Particle
Number(N)

Time(s)
q = 0.01N q = 0.05N q = 0.1N

1x104 0.389 0.109 0.078
4x104 0.702 0.171 0.109
6x104 0.781 0.187 0.125
8x104 0.842 0.234 0.156
1x105 0.921 0.265 0.188
3x105 1.404 0.546 0.500
5x105 1.763 0.843 0.749
1x106 2.653 1.575 1.341
2x106 4.025 2.995 2.465
3x106 5.787 4.227 3.807
4x106 7.410 5.616 5.007
5x106 9.765 6.988 6.302
6x106 11.591 8.487 7.676
8x106 15.912 12.183 10.404

Table 2: Peak runtime-memory measured for normally
distributed particles in 3D

Particle
Number(N)

Memory(MB)
q = 0.01N q = 0.05N q = 0.1N

1x104 38.27 25.32 22.93
4x104 63.00 30.60 27.72
6x104 64.96 32.86 30.74
8x104 69.04 38.95 34.82
1x105 71.98 40.88 34.47
3x105 106.20 74.38 70.25
5x105 129.80 95.91 91.78
1x106 207.10 166.30 164.30
2x106 354.30 305.20 298.20
3x106 539.10 486.00 472.90
4x106 642.40 581.30 565.10
5x106 888.40 819.30 802.40
6x106 999.00 947.00 924.40
8x106 1230.00 1148.00 1113.00

Table 1 and 2 summarize the runtime and peak runtime-
memory measured, respectively, for three different q
values (identical sources and targets generated from
normal distribution).

The runtimes are machine dependent. All the tests were
run on a single core Intel® Core™ i5-2410M @
(2.30GHz) computer (no SSE). The machine had 8GB of
RAM. The code is compiled under Cygwin on Wndows 7
and used the g++ compiler with optimization flags –O3
and –funroll-loops.

SUMMARY
In this paper, we proposed using the octree data

structure to organize large amounts of data for an adaptive
FMM algorithm with both uniform and non-uniform
particle distributions. We chose the octree for its efficient
representation of a 3D space and the straightforward error
estimation it provides. It also works well for independent
source and target sets, and is adaptive with respect to
sources and targets which lead to minimal FMM
computation. Our code was implemented in C++ for
portability and used dynamic memory allocation to make
it more adaptable. Analysis of peak runtime-memory
usage and runtime was performed using arbitrarily
generated source and target points (in 2D and 3D). If the
particle number, N, is large enough, both memory and
runtime showed linear dependence or O(N) scaling of
computational effort. For a given q, normally distributed
sources and targets sets or non-uniform particle
distributions would require high refinement levels and
take more time as well as memory compared to those of
uniformly distributed data sets. For uniformly distributed
identical sources and targets, the adaptive FMM reduces
to regular FMM.

In future, we plan to use the octree data structure to
implement the adaptive FMM and study electron cooling.

ACKNOWLEDGEMENT
This work was supported by the U.S. Department of

Energy, Office of Nuclear Physics, under Contract No.
DE-SC0005823.

REFERENCES
[1] Nail A. Gumerov and Ramani Duraiswami, Fast

Multipole Methods for the Helmholtz Equation in
Three Dimensions, (College Park: Elsevier, 2004).

[2] J. Carrier, L.Greengard and V. Rokhlin, A Fast
Adaptive Multipole Algorithm for Particle
Simulations. SIAM Stat. Comput., Vol. 9, p. 669-
686(1988).

[3] H.Cheng, L. Greengard and V. Rokhlin, A Fast
Adaptive Multipole Algorithm in Three Dimensions.
J. Comput. Phys., Vol. 155, p. 448-498 (1999).

[4] H. Zhang and M. Berz, The Fast Multipole Method in
Differential Algebra Framework. Nuclear Instruments
and Methods, Vol. 645, p. 338-344 (2011).

MOPPC093 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

354C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

