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Abstract 

The Fast Multipole Method (FMM) has been identified 
as one of the ten most significant numerical algorithms 
discovered in the 20th century. The FMM guarantees 
finding fast solutions to many problems in science, such 
as calculating Coulomb potentials among large number of 
particles by reducing memory footprint and runtime while 
attaining very high accuracy levels. One important 
practical issue that we have to solve in implementing a 
FMM algorithm is organizing large amounts of data, also 
called data structuring. The non-adaptive FMM is 
appropriate when the particles are uniformly distributed 
while the adaptive FMM is most efficient when the 
distribution is non-uniform. In practice, we typically 
encounter highly non-uniform 3D particle distributions. 
This paper summarizes our implementation of a 3D 
adaptive FMM algorithm data structure setup for non-
uniform particle distributions. 

INTRODUCTION 
If the Coulomb potential of N particles is evaluated 

directly, it requires on the order of O(N2) operations since 
each pair of particles in the system needs to be taken into 
account. As the number of particles increases, the 
computational cost increases rapidly. The FMM  
overcomes this quadratic complexity [1]. The FMM has a 
broad range of applications in Beam Physics such as  
space charge, electron cooling and electron cloud effect. 
The computational cost of the FMM has two major parts: 
data structuring and potential calculation. This paper 
discusses only the data structure and seeks a method for 
an efficient implementation of the FMM. Consequently, 
the algorithm used to implement the data structure needs 
to be efficient. The efficiency of an algorithm is 
determined by its cost or complexity, which comes in two 
forms, space complexity and time complexity. The space 
complexity is a measure of memory usage and the time 
complexity is a measure of speed. Hence, the key 
challenges in the implementation of FMM are overall 
memory management and efficient acceleration of 
computation. In our analysis, we generated several data 
sets from arbitrary distributions, namely normal (or 
Gaussian) and uniform distribution, to measure peak 
runtime-memory usage and   runtime. 

Adaptive FMM and non-adaptive FMM, also known as 
regular FMM, are the two major types of FMM [1]. The 
notion of adaptation is inevitable in a setup of non-
uniform distribution. In adaptive FMM, the subdivision of 
boxes with particles continues only if a particular box 
does not meet a precondition. On the other hand, in non-
adaptive FMM, all boxes are subjected to recursive 

subdivision until the number of levels roughly becomes 
log8N. There are some other adaptive FMM algorithms, 
where the precondition is parameterized by a user defined 
value, s, which is the average number of particles in the 
finest boxes [2, 3, 4]. The precondition in this paper is that 
the maximum number of source particles in the 
neighbourhood of a given target particle (also known as a 
receiver or evaluation point) should not exceed a user 
specified number, q. Therefore, the maximum level 
reached after hierarchical subdivision is governed by q. 
We measured the peak runtime-memory usage and 
runtime for different q, N, and distributions.  

The primary data structure we used to implement the 
adaptive FMM algorithm was an octree (or quadtree in 
2D). An octree is a tree data structure in which each 
internal node has eight children; it is typically used to 
partition a 3D space. Each node of the octree represents a 
box. Establishing an octree to save all necessary 
information makes the code run fast.  

Since the boxes in the neighbour list of any given box 
are of the same size (or at the same level) they can be 
treated independently. Consequently, in this data 
structure, the error estimation becomes much easier. Also, 
this data structure works perfectly if the target particles 
are identical to the source particles or independent set of 
particles. Another crucial point of this algorithm is that it 
is fully adaptive in terms of both source and target 
particles.  

By writing this code in C++ we exploit the portability 
property of C++. In addition to subsuming optimizers in 
C++, we optimized this code extensively. We used some 
non-basic operations such as sorting (used the fastest 
known sorting algorithm in practice, quicksort) and binary 
searching to make the code run fast. Hence, the algorithm 
presented in this paper is optimal since it is fast and uses 
dynamic memory allocation. 

ALGORITHM 
The first step in implementation of adaptive FMM is 

space partitioning. We start with a space, also known as 
the computational domain, large enough to contain all 
source and target points of the simulation.  

In the 2D setup, this space is a square divided into four 
equal sub-regions (quadrants) and form quadtrees. In the 
3D setup, this region is divided into eight equal sub-
regions (octants) and form octrees. These sub-regions are 
known as children of the original region or the parent. In 
general, the cube (or the square in 2D) becomes the root 
of the tree, which is subsequently subdivided into 2dl 
congruent boxes with equal volumes and  side length d/2l, 
where d and l are the side length of the root box and the  
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Figure 1: Variation of runtime with particle number, N. Figure 2: Runime measured for different distributions. 

 
level, respectively. Therefore, the structure is a tree with a 
branching factor equal to 2d, where d is the 
dimensionality. 

Each particle is identified by its coordinates (x, y, z in 
3D) and belongs to different boxes at different levels. In 
case of 3D, each box in the octree is uniquely identified 
by its universal index (n, l) where n and l are the Morton 
index and the level of the box, respectively [1]. The 
universal index of the root box is therefore (0, 0). 
The neighbourhood of a given box, B, is the set of 
boxes that shares at least one common boundary point and 
is at the same level as B (the set includes box B itself). In 
2D, the neighbourhood may contain up to 9 boxes and up 
to 27 boxes in 3D. In addition, each box has an interaction 
list (up to 27 or 189 boxes in 2D or 3D, respectively), 
which consists of the children boxes of the neighbours of 
its parent box, but not its own neighbours. Using the 
technique of bit interleaving and deinterleaving of particle 
coordinates, one can precisely determine the index of the 
box at a given level [1]. The algorithm for space 
partitioning has four steps.  
 Step1: Divide the root box into 8 cubes (or into 4 

squares in 2D) as in non-adaptive FMM until l = 2. 
 Step 2: Count the number of source points, Nn, in the 

neighborhood of each leaf node created in step 1.  
 Step 3: If Nn ≤ q, tag these boxes as (n, 2) boxes and 

stop further division. Otherwise, divide them one 
more time and create (n, 3) boxes. 

 Step 4:  Continue step 2 and 3 on newly created 
boxes in step 3 until all leaf nodes boxes have Nn ≤ q. 

The process of subdivision may result in empty boxes 
which do not contain any source particles or target 
particles: these boxes need to be discarded. 

The above four steps result in the set of target boxes 
and parents of these target boxes build the D-tree, where 
each level l of the D-tree contains a set of boxes (n, l) 
whose Nn ≤ q. In the D-tree, all target boxes represent 
leaves or ends for each branch of the tree. This D-tree is 
used in the downward pass of the adaptive FMM 
algorithm. The boxes in the interaction list of the each 
node in the D-tree containing source particles create 
leaves or nodes of a C-tree. The C-tree is built by 
traversing through these nodes bottom-up and finding 
their parent-child relationships. The collection of such 

trees is the C-forest [1]. This C-forest is used in the 
upward pass of the adaptive FMM algorithm [1]. It is 
worthwhile to notice that the number of nodes of the C-
forest (at the finest level) is considerably smaller than the 
particle number, N. Since the level of the box of a given 
target is determined by both target and source sets, this 
algorithm is fully adaptive. 

PERFORMANCE ANALYSIS 

Time 
The measured time or runtime consists of two parts: 

overhead and space partitioning. Even though both times 
increase with the particle number, the overhead associated 
with the management of its data, which is relatively small 
and needs to be applied once for a given set of data, 
dominates for fewer number of particles. As the particle 
number increases the time taken for space partitioning 
dominates and the runtime becomes directly proportional 
to N, if N is large enough. 

For a given q, the runtime increases linearly with the 
particle number, N, (Fig. 1). Also, for a given N, the 
runtime linearly increases as q decreases. The runtime 
depends on the type of particle distribution as well. The 
runtime of a normal distribution, for a given q and N, is 
higher than that of a uniform distribution (Fig. 2). The 
difference among runtimes, however, for different q 
diminishes as N increases irrespective of the distribution. 
Normally distributed sources and targets contain highly 
clustered spaces, which require deeper subdivisions and 
create additional levels to achieve the user specified 
value, q. These additional levels contribute significantly 
to the computational costs (runtime and memory). 

This code was tested for data ranging from ten thousand 
to 8 million particles (generated from normal and uniform 
distributions) with different q values. Furthermore, it was 
tested in 2D and 3D data sets. For simplicity, we have 
shown the results for 3D and normal distribution. 

Memory 
Peak runtime-memory usage also shows (Fig. 3) the 

same trend as time. Memory entails some overhead 
(storing the min/max value of the particle coordinates etc. 

Proceedings of IPAC2012, New Orleans, Louisiana, USA MOPPC093

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-115-1

353 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



within the octree data structure) inherited to any size of 
particle number. As the particle number becomes larger,  

Figure 3: Variation of peak runtime-memory (measured 
using Valgrind 3.7.0) with particle number, N. 
 
however, memory associated with overhead becomes less 
dominant. 

As the number of particles increases, generated from 
normal distribution as well as uniform distribution, the 
recursive hierarchical subdivision creates more and more 
nodes, which requires more memory to store them.  

 
Table 1: Runtime measured for normally distributed 
particles in 3D 

Particle 
Number(N) 

Time(s) 
q  = 0.01N q = 0.05N q = 0.1N 

1x104   0.389 0.109 0.078 
4x104   0.702 0.171 0.109 
6x104   0.781 0.187 0.125 
8x104   0.842 0.234 0.156 
1x105   0.921 0.265 0.188 
3x105   1.404 0.546 0.500 
5x105   1.763 0.843 0.749 
1x106   2.653 1.575 1.341 
2x106   4.025 2.995 2.465 
3x106   5.787 4.227 3.807 
4x106  7.410 5.616 5.007 
5x106  9.765 6.988 6.302 
6x106 11.591 8.487 7.676 
8x106 15.912   12.183   10.404 

 
Table 2: Peak runtime-memory measured for normally 
distributed particles in 3D 

Particle 
Number(N) 

Memory(MB) 
q  = 0.01N q = 0.05N q = 0.1N 

1x104   38.27 25.32 22.93 
4x104  63.00 30.60 27.72 
6x104  64.96 32.86 30.74 
8x104  69.04 38.95 34.82 
1x105   71.98 40.88 34.47 
3x105 106.20 74.38 70.25 
5x105 129.80 95.91 91.78 
1x106 207.10   166.30   164.30 
2x106 354.30   305.20   298.20 
3x106 539.10   486.00   472.90 
4x106 642.40   581.30   565.10 
5x106     888.40   819.30   802.40 
6x106 999.00   947.00   924.40 
8x106   1230.00 1148.00 1113.00 

 

Table 1 and 2 summarize the runtime and peak runtime- 
memory measured, respectively, for three different q 
values (identical sources and targets generated from 
normal distribution).  

The runtimes are machine dependent. All the tests were 
run on a single core Intel® Core™ i5-2410M @ 
(2.30GHz) computer (no SSE). The machine had 8GB of 
RAM. The code is compiled under Cygwin on Wndows 7 
and used the g++ compiler with optimization flags –O3 
and –funroll-loops.  

SUMMARY 
In this paper, we proposed using the octree data 

structure to organize large amounts of data for an adaptive 
FMM algorithm with both uniform and non-uniform 
particle distributions. We chose the octree for its efficient 
representation of a 3D space and the straightforward error 
estimation it provides. It also works well for independent 
source and target sets, and is adaptive with respect to 
sources and targets which lead to minimal FMM 
computation. Our code was implemented in C++ for 
portability and used dynamic memory allocation to make 
it more adaptable. Analysis of peak runtime-memory 
usage and runtime was performed using arbitrarily 
generated source and target points (in 2D and 3D). If the 
particle number, N, is large enough, both memory and 
runtime showed linear dependence or O(N) scaling of 
computational effort. For a given q, normally distributed 
sources and targets sets or non-uniform particle 
distributions would require high refinement levels and 
take more time as well as memory compared to those of 
uniformly distributed data sets. For uniformly distributed 
identical sources and targets, the adaptive FMM reduces 
to regular FMM.  

In future, we plan to use the octree data structure to 
implement the adaptive FMM and study electron cooling. 
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