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gradient (~1MV/m). and rf frequencies that vary along the 
channel. The frequency set is by the time difference 
between the center reference bunch that is not being 
accelerated and the fourth bunch ahead of it that is being 
accelerated with a phase of 30º; hence, there are 41/12 rf 
wavelengths between these four bunches.  (The 4th bunch 
behind is then decelerated at phase = -30º.) From an 
initial 200 MHz spacing, this places the initial rf 
frequency at 204.17MHz. 

As the train progresses down the channel, the bunch 
spacing decreases, and the rf frequency increases to 
maintain the bunch phases.  The buncher is continued for 
40m, which is an empirical optimum for energy rotation 
with minmal bunch distortion.  The range of rf 
frequencies used is 204.17 to 271.84 MHz.  Figure 5 
shows the effect of this transport on a train of 13 bunches, 
where the extreme ± 6 bunches are at ±45º, displaying 
development of the longitudinal beam distributions.  
 After the buncher the beam continues to drift in the 
HTC until the bunches overlap, after ~60m. The distance 
Lz needed to align the bunches is determined by the ΔE/Δt 
slope of the bunch string and the slip factor of the 
channel.  In particular, 

 m
c

cmL
t

E
HTC

z 60
1 2 




   

where ΔE/Δt is -1.23 MeV/nsec, obtained from the beam 
distribution at the end of the buncher. Figure 6a displays 
simulation of the resulting bunch recombination. The 
beam is then suitable for capture within a single bunch. 
To approximate beam capture, we place the beam within 
a 200 MHz rf system with V'=10 MV/m. After ~5m, the 
individual bunch structure is diluted and a single captured 
bunch appears in simulation, as displayed in Fig. 6b. 
  ~94% of simulated particles in the 13 bunch system are 
captured, with most of the losses and mismatch from the 
leading/trailing bunches. The simulations presented here 
are 3-D simulations within the G4Beamline simulation 
code.  The simulations included 3-D evaluations of the 
magnetic fields with a pillbox model for the accelerating 
cavities.   
 

 

Figure 5: Creation of linear energy-time correlation from 
bunches at 200 MeV kinetic energy.  The string of 
bunches injected into the HTC at 200 MeV is shown in 
(a); bunches after 40m are shown in (c) .  

Figure 6: RF capture into a single bunch from 13 initial 
bunches.  Bunches at the end of the drift section and start 
of the RF capture are shown in (a). Results of RF capture 
into a single bunch are shown in (b). 

DISCUSSION 
 The simulation demonstrates an example of bunch 
recombination using a HTC.  It is certainly not an 
optimum example.  An HTC with ηHTC changing between 
buncher drift and rf section (as in the 1-D model) would 
be more compact, and a 3-D example should be 
developed. 
 We would also like to study an HTC with a larger 
acceptance to test the limits of the concept. A longer 
period HCC with weaker fields is likely to have a larger 
momentum aperture, with somewhat weaker focusing. A 
larger momentum aperture would increase the range of 
bunch compression. 
 The longitudinal bunch combiner can also be used with 
a transverse combiner for a more symmetric solution.  
This option is being explored by Palmer et al. [8]. 
 The concept must also be integrated into a complete 
cooling scenario, with the pre- and post- merge cooling 
reoptimized following the 3-D beam dynamics. An 
optimum scenario is likely to have less transverse cooling 
before the merge and more transverse cooling after. 
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