
Yipeng Sun† , SLAC, Menlo Park, CA 94025, USA

Abstract
A storage ring with tunable momentum compaction has

the advantage of allowing different RMS bunch lengths
to be achieved with similar RF capacity. This is poten-
tially useful for many applications, such as a linear col-
lider damping ring and pre-damping ring where the injected
beam has a large energy spread and a large transverse emit-
tance. A tunable bunch length also makes it easier to ma-
nipulate single bunch instabilities in commissioning and
fine tuning. This paper presents a compact ring design
based on a supercell that achieves momentum compaction
tunability while maintaining a large dynamic aperture.

OVERVIEW
Storage rings based on alternating gradient or strong

focusing are widely used, and several focusing config-
urations having been invented and some applied in real
ring construction and operation. These include separated-
function FODO cell, combined function FD-cell, double-
bend achromat (DBA), triple-bend achromat (TBA) [1] and
theoretical minimum emittance (TME) [2] lattices. In an
electron storage ring, an electron will lose energy due to
synchrotron radiation in the bending elements. Since syn-
chrotron radiation energy loss is compensated by the RF
cavities in the ring, there is a damping effect on the syn-
chrotron oscillation with a corresponding damping time.
The synchrotron radiation energy loss is in the form of ran-
domly emitted photons, and the random quantum excita-
tions, together with the previously mentioned synchrotron
radiation damping effect, result in the single-particle equi-
librium energy spread and emittance. The equilibrium
transverse emittance is achieved when radiation damping
is equal to the quantum excitation. The equilibrium trans-
verse emittance in terms of the radiation integrals is given
by the following expression (assuming there are only bend-
ing magnets in horizontal plane).

ε = Cq

γ2I5

JuI2

(1)

where Cq = 3.83 × 10−13m, γ denotes the relativistic
factor, and I2 and I5 are the following radiation integrals:

I2[m
−1] =

∮ (
1

ρ2
x

)
ds and I5[m

−1] =
∮ (

Hx

ρ3
x

)
ds, where

Hx = βxD′2x +2αxDxD′x +γxD2

x depends on the bending
and focusing structure, ρx denotes the bending curvature in
the horizontal plane.

From observing the three formulae above, one notes that
in order to get a smaller equilibrium emittance at a given
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energy, ρx needs to be large and Hx needs to be small. A
large ρx requirement translates into more (in number) and
longer dipole magnets, while a reducing Hx depends on
the quadrupole focusing scheme, such as DBA, TBA and
TME.

In general, the requirement of achieving a low emittance
means employment of weaker dipole (smaller dispersion)
and stronger quadrupole (focusing) magnets. The beta-
tron oscillation tune variation of off-momentum particles
with respect to the on-momentum particles are character-
ized by the chromaticity Δν = ξ(p)Δp/p0. The natu-
ral chromaticity from the linear optics is always negative,
ξ0 = −

1

4π

∮
Kβds. Sextupoles are second order magnetic

elements (with respect to particle’s amplitude) and can be
placed at dispersive regions where the particle offsets are
proportional to their momentum deviation, providing extra
focusing for off-momentum particles. One observes that
there is a large natural chromaticity associated with a strong
focusing lattice (large K), while β tends to be smaller, as
does dispersion D. All these make the chromaticity cor-
rection sextupoles stronger, which in turn decreases the dy-
namic aperture, which is a measure of the maximum sta-
ble phase space amplitude in the transverse planes. An
adequate dynamic aperture is essential in accepting the in-
jected beam, which usually has a large emittance and en-
ergy spread, as well as in achieving a long beam lifetime
for stored beam in the ring.

There are several different approaches to evaluating and
studying the mechanism of dynamic aperture. One such ap-
proach using matrix formulae was developed by K. Brown
and applied to the design of second order and even higher
order achromats [3]. Here we briefly review the main con-
clusions which are described in [3]. Any optics with n
(larger than one) identical cells gives a first order achro-
mat if the betatron phase advance equals a multipole of 2π
in both transverse planes (first order transport matrix equal-
ing unity, I). When the cell number n does not equal one or
three, the second order geometric aberrations are also can-
celed. Another conclusion is, of all the second order chro-
matic aberrations, only two are independent, which can be
corrected with two families of sextupoles in each transverse
plane (for n > 4).

A general matrix notation for the transport of particles’
coordinates is adopted here. For any particle with coor-
dinates (x, x′, y, y′, z, δp) passing through a second order
achromat, the final coordinates will be the same as the ini-
tial ones to second order, as R is a unity matrix and all T
matrix elements equal zero. This points to a way of evalu-
ating and improving the dynamic aperture in a storage ring
for the ideal case, where one can simply design a ring op-
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Figure 1: Dispersion and beta functions. Left: FODO arc
cell; Right: straight section cell with an RF cavity.

tics which consists of sections that have no second order
geometric or chromatic aberrations. W. Wan developed an-
other approach using Lie algebra to design a general achro-
mat to arbitrary order, taking advantage of the midplane
symmetry and using multipole magnets for each order (for
example, octupoles for a third order achromat) [4]. Re-
cently Y. Cai has demonstrated, by derivations using the
Lie algebraic method, that all driving terms up to fourth or-
der resonance from chromaticity correction sextupoles can
be canceled out within each arc achromat section [5].

In the following sections, a second order achromatic su-
percell is designed based on K. Brown’s theory [3] where
all second order geometric and chromatic aberrations van-
ish. The betatron phase advance per cell of this supercell
can be tuned in a wide range, which provides a flexible way
to vary the momentum compaction. This design alleviates
the need to add dispersion suppressors between the arc and
straight sections.

SINGLE CELL DESIGN

We consider the design of a small compact ring with a
circumference around 70 m. The design goals of the arc
cell are compactness, simplicity and flexibility. A standard
FODO cell is picked as the basic unit, with a cell length of
roughly 2.4 m. The dipole length is chosen to be 0.5 m,
and a drift length of 0.25 m is used between each dipole
and quadrupole magnet. A quadrupole length of 0.2 m and
a sextupole length of 0.1 m are adopted, which can be made
longer if necessary. There is a focusing sextupole placed on
each side of the focusing quadrupole to correct the linear
chromaticity (second order chromatic aberrations). For the
defocusing quadrupole, the arrangement is similar. This
standard FODO cell maintains a midplane symmetry, as
can be observed from its first order optics shown in Fig.
1 (left). The betatron phase advance equals 60 degrees
in both transverse planes. For other possible ring designs,
such as a synchrotron radiation light source with ultra low
emittance, the dipole length can be further increased and
the dispersion will be decreased. The phase advance can
be kept the same by tuning the quadrupole strength. In Fig.
1 (right), the first order optics of a straight section cell is
shown, where midplane symmetry is again preserved. Four
quadrupoles are used in each half to match the beta func-
tion and tune the phase advance. The straight section can
be composed of such cells and the arc FODO cells dis-

Figure 2: Dispersion and beta functions of an example ring
design. The betatron phase advance of one arc FODO cell
equals 60 degrees in both transverse planes.

cussed above with the dipole magnets being replaced by
drift sections. The computer code MAD8 was used for op-
tics matching [6].

SUPERCELL FOR THREE PHASE
ADVANCES

According to Brown’s theory, a supercell which consists
of more than four identical cells (such as the FODO cell
discussed above) can make a second order achromat, given
the net betatron phase advance equals a multiple of 2π in
both transverse planes. The second order geometric aber-
rations are canceled between these identical cells without
sextupole assistance. Two groups of sextupoles in each cell
correct second order chromatic aberrations and do not in-
troduce new second order geometric aberrations. With this
kind of configuration, the first order and second order trans-
port matrix through one supercell are R = I and Tijk = 0.
One observes that any particle’s 6-D coordinates are repro-
duced up to second order.

Given a fixed arrangement of the dipole magnets
constrained by the ring geometry, one can adjust the
quadrupoles to tune the dispersion function and the mo-
mentum compaction. A supercell which contains 12 stan-
dard FODO cells is chosen here to construct one achro-
mat module. Three different horizontal betatron phase ad-
vances are considered: 30 degrees, 60 degrees and 90 de-
grees. In all three cases, the total phase advance is a mul-
tiple of 2π, which ensures that the overall transport matrix
is a unity matrix up to second order. There are 24 dipole
magnets in each supercell. Assuming a bending angle of
7.5 degrees for each dipole magnet, the first order optics of
such a supercell is constructed for the three different phase
advances. The total bending angle of this supercell is 180
degrees, and its length is roughly 29 m.

COMPACT RING DESIGN
The geometry of the ring is assumed to be a racetrack

shape. One supercell composes a half arc section which is
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Figure 3: Left: dynamic aperture of on-momentum and off-
momentum (±1%) particles after 1,000 turns of tracking;
Right: tune footprint in x-y phase space after 1,000 turns:
horizontal tune (top) and vertical tune (bottom).

nearly half of the ring. For simplicity, only two straight
section cells as shown in Fig. 1 (right) are used as the
matching section between the two arcs. The key point is
that the phase advance in each arc section is an integer, and
the second order aberrations vanish inside each arc section.
The straight sections can then be used to accommodate
other components, such as injection/extraction, RF cavi-
ties, damping wigglers, and insertion devices. The overall
betatron tune can be controlled by tuning the phase advance
with quadrupole magnets in the straight sections.

One such compact ring design is shown in Fig. 2. It
consists of two arc sections and two short straight sections.
Dispersion closes in each supercell and there are four peri-
ods of oscillation. After slightly tuning the arc sextupoles
to cancel the chromaticity from the straights, a unity trans-
port matrix is achieved up to second order, as also con-
firmed numerically in MAD8 [6]. As discussed above, in
such a ring one can easily tune the phase advance of each
FODO cell to be either 30 degrees or 90 degrees with-
out moving any magnets and achieve different momentum
compaction and different RMS bunch lengths. The straight
sections need to be slightly tuned to match the new TWISS
parameters of the arc section. One needs to note that in all
cases the alpha function (derivative of the beta function) is
always zero at both ends of each supercell, which essen-
tially makes the supercell shape extendable. A comparison
of different key parameters between these three operating
options can be found in [7].

The dynamic aperture should be large enough to ensure
efficient acceptance of an injected beam with large emit-
tance and energy spread. The natural chromaticity from
the straight sections needs to be minimized, which in turn
requires weaker arc sextupoles. Usually the dynamic aper-
ture is determined by single particle numerical tracking
simulation. For electron storage rings, synchrotron radi-
ation damping plays an important role and the number of
turns one needs to track to compute the dynamic aperture
depends on the damping time. In general, one damping pe-
riod is thousands of turns, and it is sufficient to evaluate
the dynamic aperture for particles that survive 10%− 15%
of the damping period. For this compact ring running at
2 GeV, one synchrotron oscillation period is roughly 70
turns, and one damping period corresponds to 104 turns.

The full optics was translated into the computer code El-
egant [8] from MAD8 format, and the dynamic aperture
was determined at 53 different angles in x-y phase space
for both on-momentum and off-momentum particles. For
each angle, a single particle was launched for tracking with
its initial coordinate varied from small amplitude to large
amplitude. Momentum offsets up to±1% were considered,
and the resulting 1,000 turn dynamic aperture is shown in
Fig. 3 (left). One observes that particles with offsets of
up to 0.2 m in the horizontal direction and 0.14 m in the
vertical direction were transmitted. This is about 104 times
the equilibrium RMS beam size (104 σ) at 2 GeV. There
is no obvious change in the aperture for the off-momentum
particles.

The tune footprint was also investigated for 1,024 turns,
with the results shown in Fig. 3 (right). One observes
that there is little amplitude related detuning, with an initial
transverse offset up to 0.15 m, which is much larger than
the usual physical aperture. This small ring design has a
relatively large emittance of 0.04 μm·rad at a beam energy
of 1 GeV for the 90 degree phase advance per cell case.
Due to this feature, it may be suitable for a pre-damping
ring or a booster ring.

CONCLUSION AND DISCUSSION
A compact ring design based on K. Brown’s achromat

theory is presented. It has a tunable momentum com-
paction and a large dynamic aperture. The transport ma-
trix through the arc section is always a unity matrix up to
second order. The overall betatron tune is controlled in the
straight sections. The dipole length and number of dipoles
can be greatly increased to convert this compact ring into a
low emittance ring with a circumference in the hundreds of
meters or kilometer range. A 120 degree FODO cell option
is being investigated, which may need fewer magnets and
a shorter arc length.
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