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Abstract 
This presentation covers analytical models that describe 
the interaction of a relativistic particle beam with the 
magnetic field of undulators. Analytic approximations to 
the Hamilton-Jacobi equation yield generating functions 
useful for particle tracking and, therefore, efficient 
simulation. Analytic expressions for kick maps of APPLE 
II undulators are presented as well. Passive and active 
shimming schemes including magic fingers and current 
sheets are also modelled. Applications at BESSY II are 
discussed which ensure efficient injection during top-up 
to satisfy machine protection and radiation safety 
requirements. 

TRACKING WITH GENERATING 
FUNCTIONS 

In synchrotron radiation sources, like storage rings, a 
large fraction of the circumference is covered by insertion 
devices and thousands of passages through the IDs are 
required in tracking simulation, to decide on beam 
stability. A fast and symplectic tracking code to simulate 
the ID effects is required for an effective scanning of a 
large parameter space. The method of GF offers this 
possibility. For Cartesian coordinates  this is 
described in [1]. The GF is derived by starting with a 
special Hamiltonian function, given by the longitudinal 
particle momentum ,

All vector potential terms  are norma-
lized by the magnetic particle stiffness eB , yielding 

.
Similarly, all momenta   are normalized  
by the particle momentum p0,

.
This Hamiltonian is applied to solve the Hamilton-
Jacobian equation  by an iterative 
procedure [1] with increasing accuracy. As a result, F3 is 
solved by a series expansion, the leading terms are given 
by 

with the coefficients 

This GF expansion for arbitrary, 3-dimensional magnetic 
fields converges well, if the components of normalized 
vector potential and the transverse momenta are small. 
The GF depends on integration step length zf, the initial 
particle coordinates (x, y) and on the final momenta (pxf, 
pyf). The conjugated coordinates are derived from 
relations 

The resulting transformation is formed into an explicit 
function, depending on the initial particle coordinate 
variables and yielding the final particle coordinate 
variables. The tracking routine is solved for arbitrary 
magnetic fields, and can be applied to a specified field, if 
the components of the vector potential can be expressed 
by functions which can be integrated and differentiated as 
required, like terms of a Fourier series. The step length zf 
depends on the smallness of the scaled vector potential 
terms , but normally the steps are much 
longer than comparable integration steps, increasing the 
speed of the transformation enormously. This method 
becomes especially fast for fast oscillating fields, where 
many oscillations can be tracked in a single step, whereas 
an integration methods requires steps much shorter than 
the shortest oscillation period. If the vector potential is 
derived from a Fourier series, the required fijk coefficients 
become very simple, because many terms cancel.  

MAGNETIC FIELD MODELS OF 
UNDULATORS 

If possible it is extremely useful to develop analytic 
models of the magnet structures to be studied. Assuming 
a permeability of one (only for pure permanent magnet 
devices) the field can be composed with a linear 
superposition of the fields of individual undulator sub-
arrays.  Often, the complete system can be described in all 
modes of operation (energy and polarization, i.e. 
magnetic gap and magnet row phase) by only a small set 
of parameters. Many undulator structures can be 
composed of a combination of several longitudinally 
extended magnet arrays and, usually, several rows can be 
described with the same set of coefficients. A few more 
parameters describe the transverse and longitudinal row 
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position. In the following we give examples for various 
undulator designs.  

Planar Undulator 
In [1] the generating function is derived for one 

longitudinal and one transverse Fourier component of a 
planar undulator. Any arbitrary periodic structure in 
longitudinal direction can be expanded into Fourier 
components in longitudinal and transverse direction. The 
vertical field dependence follows from Maxwell 
equations [2]: 

with . The sin-terms can be skipped ( )
for magnet configurations which are symmetric in 
transverse direction. The Fourier components add linearly 
in the vector potential. The generating function contains 
products and higher order terms of the vector potential. 
The convergence of the described tracking method 
permits the integration over several period lengths in a 
single step. Thus, cross terms of longitudinal Fourier 
components with different spatial frequencies drop out 
due to orthogonality and only products from terms of 
identical frequencies remain. 

APPLE II Undulator 
The magnetic structure of an APPLE II device is 

composed of four identical magnet rows which can be 
moved independently in longitudinal direction. It is 
sufficient to parametrize the field of one array via a 
transverse Fourier decomposition. The fields of the other 
rows follow from symmetry considerations and they 
depend on the relative longitudinal phases [1]. Sin-terms 
are required if the magnets employ cut-outs for clamping 
or if the magnet shape is non-symmetric transversely, as it 
is the case for an APPLE III undulator [3] or a DELTA 
undulator [4]. The 3rd field harmonic in longitudinal 
direction is zero because the number of blocks per period 
is four. Higher order terms can be neglected.  

Asymmetric Figure-8 Undulator 
At high K-values conventional planar undulators 

produce a high heat load on axis which can deteriorate the 
performance of a high resolution beamline. The magnet 
design of the figure-8 undulator [5] is optimized for a 
reduced on-axis power density. The magnet array on each 
girder consists of a central magnet row for the vertical 
field and two side magnet rows with double the period 
length for the horizontal field. A further advantage of the 
design is the presence of odd-half-integer harmonics with 
vertical linear polarization besides the odd-integer 
harmonics with horizontal polarization. Thus, the figure-8 

magnet configuration is ideally suited for an in-vacuum 
device with variable polarization since no magnet row 
phasing is required. In air the outer magnet rows can be 
moved longitudinally which provides elliptical light. This 
scheme has been proposed by Tanaka and Kitamura as the 
asymmetric figure-8 undulator [6]. This device can be 
parametrized in a similar way as the APPLE II undulator. 

The outer magnet rows are parametrized in the same 
way as the APPLE II arrays and the center magnet rows 
are modelled as a pure permanent magnet planar 
undulator. Two sets of Fourier coefficients are required 
for the inner  and outer  magnet arrays, 
respectively. The vector potential is given by:

+

with

, , ,

 period length of the outer arrays, = transverse 
distance of outer arrays and  = difference gap to 
nominal gap where the Fourier coefficients have been 
determined. , the phases of the two centre magnet 
rows, are usually zero. A similar expression can be found 
for  and  is assumed to be zero without any 
restriction of generality. Deriving the generating function, 
integrals over products of vector potential components 
have to be evaluated. Mixed terms from the contributions 
of inner and outer arrays do not show up due to the 
orthogonality of the functions.    

MODELLING THE ENDPOLES 
Undulator end structures are designed such that they 

minimize the net kick and sometimes also the net 
displacement. Usually, tracking of planar undulators 
assumes a cos-like vertical field at the undulator ends and 
zero horizontal fields. Elliptical / helical undulators are 
more complicated since the end structures must be 
compensated for both transverse field components. Two 
methods are available to treat the end structures of 
arbitrary undulator fields. Both methods are implemented 
into the tracking code Elegant [7].  

The 1st method [8] models the endpoles by two half 
periods with amplitudes of  and  of the 
periodic pole amplitude including the complete 3-
dimensional field distribution. Tracking through each 
endpole is done in two steps with step sizes of  and 
appropriate amplitudes. Apart from the amplitude scaling 

FRXAB01 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

4166C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



the endpole tracking scheme follows exactly the scheme 
of the periodic part. 

The 2nd method [9] extrapolates the vector potential to 
zero at both ends and integrates in two steps (not 
necessarily equal in length) over the end structure. For 
illustration we discuss the 2nd method for an APPLE II 
device. The vector potential of each magnet row i can be 
written as:  

Then, the total vector potential is given by: 

with  and . Assuming  the tracking 
scheme follows the procedure: 

drift back from ID entrance by 
track by ; ,

track by to ID entrance;
,

track n periods through undulator 
track by  ; ,

   
track by ; ;

Both schemes are applicable also to more complicated 
structures such as the asymmetric figure-8 undulator.  

In both cases the magnetic field of the end structure 
shows non-differentiable points (the field is non-
Maxwellian) where the number of these points is larger in 
the 1st case. Nevertheless, the integration method is 
symplectic. Concerning the excitation pattern the 1st

method models a kick and displacement free 
configuration (i.e.: the axis of the trajectory helix within 
the periodic part of the undulator coincides with the 
undulator axis) whereas the configuration of the 2nd

method employs a finite beam displacement. 
Nevertheless, both methods deliver useful results and we 
see no preference for one of them. 

STORAGE RING MAGNETS 
Fringe ields of ultipole agnets 

Describing storage ring multipoles higher than a dipole 
cylindrical coordinates are best suited. The Hamiltonian 
has the form: 

The magnetic fields are given by [10]  

With the generic function  and the related functions: 

The Hamiltonian requires the vector potential. We choose 
a vector potential with Az=0: 

The function  is the 1st integral of the generic 
function  with respect to z. The field is completely 
defined by  and we choose the following Ansatz:

Higher derivatives  of   contribute only further 
off axis. 

 Thus, we have an analytic description of the vector 
potential for a real 3D multipole. The derivation of the 
generating function for symplectic tracking follows 
exactly the same procedure as for Cartesian coordinates 
using the canonical variables r, , pr, p . The 
implementation into a tracking code requires the 
transformation from Cartesian coordinates and 
(kinematic) impulses to cylindric, canonic coordinates 
and impulses and vice versa. The generating function can 
be derived analytically as described previously. The 
Hamiltonian employs quadratic terms of the vector 
potential. In case the integration over the multipole is 
done in a single step the vector potential terms in the 
Hamilton-Jacobi Equation are significantly reduced 
because cross terms of different spatial frequency drop 
out during integration.   

For illustration we evaluated the fields of a permanent 
magnet quadrupole as proposed by Halbach [11] with 8 
segments and inner / outer radius of 20mm / 40mm. 
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Figure 1 shows the longitudinal field distribution  in 
the midplane r0 off-axis with r0=3, 9, 18mm. A Fourier-
decomposition provides the coefficients ci0 with 

Even close to the magnets (2mm distance) 25 Fourier 
coefficients describe the field within 0.2% accuracy. The 
coefficients ai are extracted from the ci0 via: 

Due to the low number of segments the radial field 
dependence is non-linear further off-axis. The 7th order 
polynomial fit of Fig. 2 shows the contributions from 3rd,
5th and 7th order radial terms (p0=4).

Figure 1: Longitudinal -field distributions in the 
midplane and representations with Fourier coefficients for 
a permanent magnet quadrupole with inner/outer diameter 
of 20/40mm. The fields are given at distances of 3mm 
(black), 9mm (red), 18mm (blue) to the beam axis. 

The method of GF derived for Cartesian coordinates 
can be extended to cylindrical coordinates ,
where the transformation from the Cartesian in to the 
cylindrical coordinate variables is given by a GF of type 
[12] 

with  

and the variables ‘z’ and ‘pz’ stay unchanged.  

The implementation into a tracking code requires the 
transformation from Cartesian coordinates and 
(kinematic) impulses to cylindric, canonic coordinates 
and impulses and vice versa. In cylindrical coordinates 
the Hamiltonian is given as 

If the vector potential , the 
Hamiltonian describes transformations in a drift section. 
The changes of the particle coordinate variables within 
the drift are  

These are applied to construct the GF of a drift section 

As a consistency check, this GF can be used for a small 
drift length  to approximate (difference quotient 
is replaced by differential quotient) comparable results 
from the Hamiltonian, for example 

which yields  

in agreement with the related derivatives from the 
Hamiltonian function. 

This GF of a drift is used as a starting solution, to 
derive higher order terms of the GF by iteration [1] 

Assuming Az=0, the coefficients fijk [1] are given by 

The GF depends on the initial position variables and final 
momenta, the conjugated coordinate variables are derived 
by 

Similar as in the Cartesian case, the resulting equation 
system can be formed into an explicit system, which 
yields the final particle coordinates as a function of the 
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initial ones. The solution becomes more complicated as in 
the Cartesian case, but easily feasible for a FORTRAN 
tracking code. 

Figure 2: Transverse -field distribution in the midplane 
for a permanent magnet quadrupole as described in the 
text. 

  Dipole Magnet 
Applying the formalism to dipole magnets requires 

another coordinate system which is defined along the 
ideal orbit through the magnet. With an analytic 
description of the dipole in this specific coordinate system 
the derivation of the generating function for tracking is 
straight forward. This is subject to further investigations.  

ANALYTIC UNDULATOR KICKMAPS 
The tracking scheme described above includes the 

finite length of the magnet devices. Assuming short 
devices (thin lens approximation) kick maps can be used 
instead. Kick maps have been used for undulators where 
the kick maps are derived from magnetic field 
simulations. In case of complex undulator structures with 
many different modes of operation (e.g. APPLE II 
undulator in universal mode) and analytic field model 
permits an analytic description of the dynamic kicks. The 
canonical kicks are related to the generating function via: 

Within the periodic structure the integration is taken 
over integer multiples of the period length. The vector 
potentials are equal at the start and end points of 
integration (z0 and z0+zf) and, thus, the kinematic kicks 
and are identical to the canonical kicks. For illustration 
we give the kicks for an APPLE II device in the elliptical 
mode: 

with L= undulator length,  = difference to reference 
gap,  = electron beam stiffness. The analytic functions 

 and  (they depend only on the magnet row phase 
), ,  and  are given in [1]. 
This description is based on a single set of Fourier 

coefficients which has been evaluated once. With this set 
of coefficients a fast evaluation of the dynamic kicks at 
all phases and gaps is possible which permits an on-line 
evaluation and compensation of tune shifts. Analytic kick 
maps for other operation modes (inclined mode or 
universal mode) are given in [1].   
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