
ORBIT CORRECTION STUDIES USING NEURAL NETWORKS

E. Meier∗, Y.-R. E. Tan, G. S. LeBlanc, Australian Synchrotron, Clayton 3168, Australia

Abstract
This paper reports the use of neural networks for orbit

correction at the Australian Synchrotron Storage Ring. The

proposed system uses two neural networks in an actor-critic

scheme to model a long term cost function and compute

appropriate corrections. The system is entirely based on

the history of the beam position and the actuators, i.e. the

corrector magnets, in the storage ring. This makes the sys-

tem auto-tuneable, which has the advantage of avoiding the

measure of a response matrix. The controller will automat-

ically maintain an updated BPM corrector response matrix.

In future if coupled with some form of orbit response anal-

ysis, the system will have the potential to track drifts or

changes to the lattice functions in ”real time”. As a generic

and robust orbit correction program it can be used during

commissioning and in slow orbit feedback. In this study,

we present positive initial results of the simulations of the

storage ring in Matlab.

INTRODUCTION
Control systems are crucial to ensure beam quality and

stability. As accelerator systems become more complex,

there is a real need for the development of more sophisti-

cated control algorithms for beam tuning and beam-based

control. In most cases, conventional controllers such as the

PID algorithm can be used. Although they have the advan-

tage of being conceptually very simple, they have several

important limitations as the number of parameters to con-

trol increases [1]. These include necessary and time con-

suming re-measurements of the response matrix, re-tuning

of the controller parameters whenever parameters outside

the control loop are modified, and increased control im-

precisions due to inaccurate measurements of the response

matrix.

In order to overcome these issues, we investigate the ap-

plication of neural networks to beam tuning. An example

of a large scale control problem in accelerator physics is

the orbit correction in the storage ring, where the response

of the beam orbit is essentially a linear function of the cor-

rector magnets. However, with a view to eventually utilize

the system in other beam-based control applications, we in-

vestigate a system applicable to nonlinear systems. In the

proposed scheme, an actor neural network learns to take ap-

propriate control actions in order to minimize a long term

cost function modeled by a critic neural network [2]. Such

a system has the advantage of being auto-tunable, since it
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is trained online in a continuous fashion. This paper details

the system, presents some simulation results and discusses

system limitations and anticipated improvements.

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks mimic the way biological neu-

rons function. A neuron or node receives an input vector

x = [x1, x2, ..., xn]
T from other nodes in the network. A

weight is associated with each input component to reflect

their relative importance, forming the weight vector V.

The weighted sum of the inputs
∑

i vixi then goes through

an activation function φ, to give the neuron’s response

φ(
∑

i vixi). Possible activation functions include hyper-

bolic tangent, Gaussian, sigmoid and linear functions [3].

Artificial neural networks are commonly composed of

three distinctive layers; an input layer, a hidden layer and

an output layer (see Fig.1), with nin, nhid and nout neu-

rons, respectively. Two weight matrices are associated with

connections between the different layers; one for the con-

nections between input and hidden layers, V ∈ Rnin×nhid ,

and one for the connections from the hidden layer to the

output layer, W ∈ Rnhid×nout . The output of the network

can then be written as [3]:

Y = WTφ(VTX), (1)

where X is the input vector to the network, and φ is the

activation function of the nodes in the hidden layer. We

note that the activation function of the output layer nodes

corresponds to the identity function; the input neurons only

serve to pass the information from the input layer to the

hidden layer.

CONTROL APPROACH

Consider a general nonlinear process, written as [2]:

zk+τ = f(z̄k, ūk−1,uk, d̄k+τ−1), (2)

where k is the current time step, τ is the system de-

lay, zk, uk and dk represent the system output, input

and disturbance vectors, respectively. We also define

z̄k = [zk, ..., zk−n+1]
T , ūk−1 = [uk−1, ...,uk−n+1]

T and

d̄k+τ−1 = [dk+τ−1, ...,dk]
T . The system described by

Eq. (2) is a function of the history of the n past intputs and

outputs of the system.

Now let us define the following control objective or long

term cost function [2]:
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Figure 1: Schematic representation of an artificial neural

network with three layers; input, hidden and output layers.

Jk =
∞∑

i=0

γirk+i, (3)

where γ > 0 is the discount factor and rk+i is the short

term cost given by:

rk = ekQeTk + ukRuT
k , (4)

in which the matrices Q and R are positive defined and

the error term is given by:

ek = zk − zk,ref , (5)

where zk is the actual system output and zk,ref its refer-

ence signal. Thus, minimising Jk is equivalent to simulta-

neously minimising the long term error and correction sig-

nal uk.

To compute the optimal uk, we use the actor-critic

scheme illustrated in Fig. 2. The critic neural network

(CNN) computes Ĵk, the estimate of the true Jk, based on

the system output error ek; it receives the vector Xcnn =
ek as its input (see Fig. 2). The actor neural network (ANN)

then calculates the correction signal uk based on the refer-

ence output signal zref and the input-output history of the

system; it receives the vector Xann = [z̄k, ūk−1, zref ]
T as

its input.

Both neural networks are trained online, and it can be

shown that the weight update law is, for the CNN [2] :

Wcnn
k+τ = Wcnn

k − αcnnγφ
cnn
k (γĴk + rk − Ĵk), (6)

where αcnn is the CNN learning rate and φcnn
k =

WT
cnn(V

T
cnn,kXcnn) is the corresponding output of the

hidden layer nodes of the CNN. For the ANN, the weight

update law is given by [2]:

Wann
k+τ = Wann

k − αannφ
ann
k (ek+τ + Ĵk)

T , (7)

Figure 2: Actor - Critic control scheme. The ANN com-

putes the appropriate correction based on the system’s in-

put and output history, while the CNN models the long term

cost function.

where αann is the ANN learning rate and φann
k =

φann(VT
annXann,k). Equation (7) shows that it is nec-

essary to have a matching number of positions and actu-

ators. Indeed, W ann ∈ Rnhid×nout , where nout has for

dimension the number of actuators; since φannek+τ ∈
Rnhid×nvar , where nvar is the number of process variables,

we must have nvar = nout for Eq. (7) to hold. Another as-

sumption of this control scheme is that the response matrix

is positive defined [2].

APPLICATION TO THE STORAGE RING
In what follows we show results obtained using Matlab

to simulate the storage ring, which has a total of 42 horizon-

tal correctors (3 for each of the 14 sectors) and 98 BPMs

(7 per sector). We shall show the results obtained for a

3 BPMs - 3 correctors configuration for visual simplicity.

BPM number in sectors 1, 3 and 7 were chosen along with

and the last corrector in the same sectors.

The horizontal beam position having a linear response

with the current in the corrector magnets, the positions at

the chosen BPMs can be written as:

zk = zk−1 +Muk, (8)

where the horizontal position vector is noted z for con-

sistency with previous notations, M is the response matrix,

and uk is the applied correction to the corrector magnets.

According to Eq. (8), we can use n = 1 lag in Eq. (2).

Figure 3 below shows a typical simulation result, for

which Q = 0.01I3 and R = 0.05I3, where I3 is the 3 × 3
identity matrix. The discount factor was γ = 0.5, and the

learning rates were αann = 0.05 and αcnn = 0.08. All

weight matrices were initialized to random numbers rang-

ing from -0.4 to 0.4. Both the ANN and the CNN networks

had 10 hidden nodes with hyperbolic tangent functions.

The first row of plots shows the actual and target hori-

zontal position of the beam at the different BPMs in gray

and black, respectively. The second row displays the cor-
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Figure 3: Example of a simulation run. Plots in the first row display the beam horizontal position, while plots in the

second row give the corresponding correctors magnet response. The unique plot in row three displays the cost function

Ĵk modeled by the CNN.

rector magnets’ response. Finally, the plot in the third row

displays the cost function Ĵk computed by the CNN. The

initial horizontal positions of the beam were [0,0,0] μm
and their set points [20,80,-80] μm.

The results show that the control system brings all posi-

tions towards their set points up to k ∼=50, where the beam

position in sector 1 crosses its set point. This results in

an increase in the absolute value of the cost function Ĵk,

due to important changes in actuators’ settings. The beam

moves away from the target positions in sectors 1 and 3

until k ∼=190, where the system has learnt to bring the

beam its target position for all location. Desired settings

are reached after 350 steps. We note that the system’s re-

sponse would improve for higher penalties on position er-

rors rather than changes in actuators settings (i.e. higher

values for the elements of Q rather than those in R).

CONCLUSIONS AND FURTHER STUDIES

The system was successfully tested for the storage ring

using Matlab. It has the advantage of avoiding a precise

measurement of the response matrix in order to perform the

correction. There are however significant problems such as

the requirement that the response matrix be positive defined

and that there are matching inputs and actuators. These

limitations make it practically unusable in storage ring orbit

control applications. Therefore efforts have been put into

adapting the actor-critic scheme to the general multi-input

multi-output case, using a modified expression of the cost

function as described in [4].
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