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Abstract 
Metallized racetrack vacuum chambers will be used in 

the pulsed magnets of the Austrian cancer therapy and 
research facility, MedAustron. It is important that the 
metallization does not unduly degrade field rise and fall 
times or the flattop of the field pulse in the kicker 
magnets. This was of particular concern for a tune kicker 
magnet, which has a specified rise and fall time of 100 ns. 
The impact of the metallization, upon the transient field 
response, has been studied using Finite Element Method 
(FEM) simulations: the dependency of the field response 
to the metallization thickness and resistivity are presented 
in this paper and formulae for the field response, for a 
ramped transient excitation current, are given. An 
equivalent circuit for the metallization allows the effect of 
an arbitrary excitation to be studied, with a circuit 
simulator, and the circuit optimized. Furthermore, results 
of simulations of the effect of a magnetic brazing collar, 
located between the ceramic vacuum chamber and flange, 
of the tune kicker magnet, are reported. 

VALIDATION OF FEM PREDICTIONS  
The resistivity and thickness of metallization of the 

vacuum chambers, for the MedAustron kicker magnets, 
are chosen from 2D FEM simulations and formulae. In 
order to prove the validity and accuracy of these they are 
compared with measurements for the LHC dump (MKD) 
kicker magnet [1]. The MKD and the MedAustron kicker 
magnets are lumped inductance type magnets. 

FEM Simulations 
The measured driving current for the MKD was used as 

an input for the FEM simulations for validating the 
predictions. The current, predicted and measured fields, 
for a chamber with an effective titanium coating thickness 
of 1.833 µm, are plotted in Fig. 1.  

 
Figure 1: LHC MKD measurements [1] compared with 
simulation results: the errors between simulations and 
measurements are shown. 

The MKD field is measured along the centreline of the 
magnet aperture: similarly the predicted field is evaluated 
at the centre of the aperture of the 2D model. The 
maximum error between the FEM prediction and the 
measured magnetic field, evaluated by linear interpolation 
of the discrete values, is less than 0.4 % (Fig. 1). This 
maximum error is achieved for all three MKD chambers 
that were tested, which had effective coating thicknesses, 
determined by the longitudinal DC resistance, of 
1.833 µm, 2.044 µm and 2.344 µm. The good agreement 
between measurements and predictions confirms that the 
metallization for the MedAustron kicker magnets can be 
chosen from FEM simulations. 

Additional FEM simulations showed that the same 
values for field attenuation and field delay are obtained if 
the coating thickness (d) or the conductivity (σ) of the 
metallization is changed, provided that both the d.c. 
resistance, proportional to 1/(σd), is unaltered and that the 
skin depth is much larger than the coating thickness [4]. 
Thus the effect of a very thin coating thickness can be 
modelled using a thicker coating and a proportionately 
smaller conductivity, without the meshing problems 
which very thin coatings can cause. 

Analytic Calculation 
The analytic solution of [3], for the field rise in a 

metallized chamber, showed a discrepancy with respect to 
FEM predictions [2, 5] and thus also with respect to the 
measurements presented above. Thus, herein, the formula 
of [3] has been adapted with a correction factor. In 
addition, formulae have been derived for a current ramp 
excitation (Eqs. 1-4). The new analytic solution is in good 
agreement with the predictions from the FEM model 
(Fig. 2). 

 
Figure 2: FEM predictions for field compared with new 
analytic solution (Eq. 1-4) for ramped currents. 
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thickness. Hence for the manufacture of the metallized 
chamber, the required sheet resistance of the coating 
(Eq. 5) [4, 6] is specified: 

d
Rsheet 

1
      (5) 

Figure 5: Diagram to extend the use of Fig. 4. 

The reciprocal of Eq. 5, the sheet conductance, is used 
on the x-axis of Fig. 4. Hence for a current rise time of 
100 ns the x-axis of Fig. 4 starts with a sheet conductance 
of 25 mS: this corresponds to an effective Ti metallization 
thickness of 10 nm. 

Improvement of the Field Rise Time 
The tune kicker has the shortest transition times of the 

MedAustron kickers and has thus been studied in detail. 
This kicker system has been modelled, using PSpice, 
together with the equivalent electrical model of the power 
converter, magnet and metallized chamber. The value of a 
capacitor, on the input of the tune kicker magnet, has 
been used to optimize the rise time and overshoot of the 
magnet field.  

 
Figure 6: Normalized driving current (dashed) and 
magnetic field (solid) for different input capacitances. 

In Fig. 6 the dashed lines represent the predicted 
driving current for the tune kicker, while the predicted 
field is indicated with solid lines. The optimum capacitor 
value is chosen dependent on both the required field rise 
time and the permissible field overshoot.  

VACUUM CHAMBER LENGTH 
2D models do not take into account the ends of the 

vacuum chambers, which are equipped with nonmagnetic 
flanges brazed to the ceramic chamber via magnetic 

transition pieces. To determine an appropriate length of 
the ceramic chamber, so as to not unduly influence the 
effective magnetic length of the magnet, 3D d.c. FEM 
simulations for a MKC magnet [7] have been carried out 
to study the effect of the distance between the endplate 
and magnetic transition piece: eddy currents are 
neglected.

  

Figure 7: Relative change of effective length over 
distance of brazing to endplate of magnet for peripheral 
and face brazed flanges. 

The effective length of the MKC is approx. 300 mm. 
Since the brazing only influences the end fields, the effect 
will increase for shorter magnets and decrease for longer 
ones. By keeping a distance of 3 mm between transition 
piece and end plate, the effective length will be reduced 
by 0.7 % (Fig. 7) in the worst case. 

CONCLUSIONS 
FEM simulations of the transient field inside metallized 

ceramic chambers show good agreement with 3 different 
measurements. An existing formula has been developed to 
be used with ramped currents and, with the help of FEM 
simulations, adapted with a correction factor to be more 
accurate. The simulations and the analytic formulae are in 
good agreement with each other. The time-constant for a 
metallized ceramic, obtained from formulae, has been 
incorporated in a PSpice model of the kicker system so 
that arbitrary excitation waveforms can be considered and 
the system optimized for the magnetic field rise and fall 
times. 
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