Keyword: ground-motion
Paper Title Other Keywords Page
MOPPC073 Improvements in the PLACET Tracking Code simulation, linac, alignment, multipole 301
 
  • A. Latina, E. Adli, D. Schulte, J. Snuverink
    CERN, Geneva, Switzerland
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
 
  The tracking code PLACET simulates beam transport and orbit corrections in linear accelerators. It incorporates single- and multi-bunch effects, static and dynamic imperfections. It has an interface based on both Tcl/Tk and Octave to provide maximum flexibility and easy programming of complex scenarios. Recently, new functionality has been added to expand its simulation and tuning capabilities, such as: tools to perform beam-based alignment of non-linear optical systems, possibility to track through the interaction region in presence of external magnetic fields (detector solenoid), higher order imperfections in magnets, better tools for integrated feedback loops. Moreover, self contained frameworks have been created to ease the simulation of CLIC Drive Beam, CLIC Main Beam, and other existing electron machines such as CTF3 and FACET.  
 
TUPPR028 Recent Improvements in the Orbit Feedback and Ground Motion Mitigation Techniques for CLIC luminosity, quadrupole, simulation, feedback 1876
 
  • J. Snuverink, J. Pfingstner, D. Schulte
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques have been proposed - quadrupole stabilization and positioning, final doublet stabilization as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) that model the latest hardware designs have been performed. Furthermore, additional imperfections have been introduced and the robustness of this system is discussed in detail. The possibility of using ground motion measurements as an alternative to the quadrupole stabilization is investigated.  
 
TUPPR047 Vibration Model Validation for Linear Collider Detector Platforms simulation, luminosity, damping, coupling 1921
 
  • K.J. Bertsche, J.W. Amann, T.W. Markiewicz, M. Oriunno, A.W. Weidemann, G.R. White
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.
 
 
TUPPR060 Detection of Ground Motion Effects on the Beam Trajectory at ATF2 quadrupole, lattice, extraction, linear-collider 1954
 
  • Y. Renier, J. Pfingstner, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  The ATF2 experiment is currently demonstrating the feasibility of the beam delivery system for the future linear collider. The tunning is very critical to obtain the nanometer vertical beam size at the interaction point and in the case of CLIC, ground motion effects on the beam must be corrected. In this respect, as a proof of principle of a ground motion feed forward, the ground motion effects on the beam trajectory are extracted from the beam position monitor readings.