Author: Zlobin, A.V.
Paper Title Page
TUOAC03 Status of a Single-Aperture 11 T Nb3Sn Demonstrator Dipole for LHC Upgrades 1098
 
  • A.V. Zlobin, N. Andreev, G. Apollinari, E.Z. Barzi, R. Bossert, G. Chlachidze, V. Kashikhin, A. Nobrega, I. Novitski, D. Turrioni, R. Yamada
    Fermilab, Batavia, USA
  • B. Auchmann, M. Karppinen, L. Oberli, L. Rossi, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The planned upgrade of the LHC collimation system includes two additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. The necessary longitudinal space for the collimators could be provided by replacing some 8.33 T NbTi LHC main dipoles with 11 T dipoles based on Nb3Sn superconductor and compatible with the LHC lattice and main systems. To demonstrate t his possibility Fermilab and CERN have started in 2011 a joint R&D program with the goal of building by 2014 a 5.5-m long twin-aperture dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m long single-aperture demonstration dipole with the nominal field of 11 T at the LHC nominal current of ~11.85 kA and 60 mm bore with ~20% margin. This paper describes the design, construction and test results of the single-aperture Nb3Sn demonstrator model for the LHC collimation system upgrade.
 
slides icon Slides TUOAC03 [5.812 MB]  
 
TUPPD010 Helical Muon Beam Cooling Channel Engineering Design 1425
 
  • G. Flanagan, R.P. Johnson, G.M. Kazakevich, F. Marhauser, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • V.S. Kashikhin, M.L. Lopes, G.V. Romanov, M.A. Tartaglia, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Supported in part by DOE STTR Grant DE-SC0006266
The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb3Sn helical solenoid design
 
 
THPPD035 Magnets for Interaction Regions of a 1.5×1.5 TeV Muon Collider 3584
 
  • V. Kashikhin, Y. Alexahin, N.V. Mokhov, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The updated IR optics and conceptual designs of large aperture superconducting quadrupole magnets for a muon collider with a c.o.m. energy of 3 TeV and an average luminosity of 4·1034 cm-2 s-1 are presented. All magnets are based on the Nb3Sn superconductor and designed to provide an adequate operation field gradient in the given aperture with the critical current margin required for reliable machine operation. Special dipole coils were added to quadrupole designs to provide ~2 T bending field and thus facilitate chromaticity correction and dilute decay electron fluxes on the detector. Magnet cross-sections were optimized to achieve the best possible field quality in the magnet aperture occupied with beams. Magnet parameters are reported and compared with the requirements. Energy deposition calculations with the MARS code have allowed to optimize parameters of inner absorbers, collimators in interconnect regions and Machine-Detector Interface.
 
 
THPPD036 High-Field Combined-Function Magnets for a 1.5×1.5 TeV Muon Collider Storage Ring 3587
 
  • V. Kashikhin, Y. Alexahin, N.V. Mokhov, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
A new storage ring lattice based on combined function high-field magnets and conceptual designs of superconducting magnets with dipole and quadrupole coils for a muon collider with a c.o.m. energy of 3 TeV and an average luminosity of 4x1034 cm-2 s-1 are presented. Magnets are designed to provide the required focusing field gradient and bending field in the aperture with the appropriate operation margin. Magnets have large apertures to provide an adequate space for internal absorbers, vacuum insulation, beam pipe, and helium channel. Coil cross-sections were optimized to achieve the best possible field quality in the magnet aperture occupied with beams. Magnet parameters are reported and compared with the requirements. Energy deposition calculations with the MARS code have allowed to optimize parameters of inner absorbers and collimators in interconnect regions, thus reducing peak power density and dynamic loads to the tolerable levels.
 
 
THPPD037 Design Studies of a Dipole with Elliptical Aperture for the Muon Collider Storage Ring 3590
 
  • M.L. Lopes, V. Kashikhin, J.C. Tompkins, A.V. Zlobin
    Fermilab, Batavia, USA
  • R.B. Palmer
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported partially by US-MAP and by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The requirements and operating conditions for superconducting magnets used in a Muon Collider Storage Ring are challenging. About one third of the beam energy is deposited along the magnets by the decay electrons. As a possible solution an elliptical tungsten absorber could intercept the decay electrons and absorb the heat limiting the heat load on superconducting coils to the acceptable level. In this paper we describe the main design issues of dipoles with an elliptical aperture taking into consideration the field and field quality. The temperature margin and the forces in the coils are presented as well.
 
 
THPPD039 Magnetic Analysis of a Single-Aperture 11T Nb3Sn Demonstrator Dipole for LHC Upgrades 3596
 
  • B. Auchmann, M. Karppinen
    CERN, Geneva, Switzerland
  • V. Kashikhin, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas around points 2, 3, and 7. The necessary longitudinal space for the collimators could be provided by replacing some 8.33-T 15-m-long NbTi LHC main dipoles with shorter 11-T Nb3Sn dipoles compatible with the LHC lattice and main systems. To demonstrate this possibility, in 2011 Fermilab and CERN started a joint R&D program with the goal of building a 5.5-m-long twin-aperture dipole prototype suitable for installation in the LHC by 2014. The first step of this program is the development of a 2-m-long single-aperture demonstration dipole with the nominal field of 11 T at the LHC nominal current of ~11.85 kA and 60-mm bore with ~20% margin. This paper presents the results of magnetic analysis of the single-aperture Nb3Sn demonstrator dipole for the LHC collimation system upgrade.
 
 
THPPD040 Quench Protection Analysis of a Single-Aperture 11T Nb3Sn Demonstrator Dipole for LHC Upgrades 3599
 
  • A.V. Zlobin, I. Novitski, R. Yamada
    Fermilab, Batavia, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas around points 2, 3, and 7. The necessary longitudinal space for the collimators could be provided by replacing some 8.33-T 15-m-long NbTi LHC main dipoles with shorter 11-T Nb3Sn dipoles compatible with the LHC lattice and main systems. To demonstrate this possibility, in 2011 Fermilab and CERN started a joint R&D program with the goal of building by 2014 a 5.5-m-long twin-aperture dipole prototype suitable for installation in the LHC. The first step of this program is the development of a 2-m-long single-aperture demonstration dipole with the nominal field of 11 T at the LHC nominal current of ~11.85 kA and 60-mm bore with ~20% margin. This paper summarizes the results of quench protection analysis of the single-aperture Nb3Sn demonstrator dipole for the LHC collimation system upgrade.
 
 
THPPD034 Quench Performance and Field Quality of 90-mm Nb3Sn Quadrupoles of TQC Series 3581
 
  • G. Chlachidze, N. Andreev, R. Bossert, J. DiMarco, V. Kashikhin, M.J. Lamm, A. Nobrega, I. Novitski, M.A. Tartaglia, G. Velev, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
A series of accelerator quality Nb3Sn quadrupole models has been developed, fabricated and tested at Fermilab. The magnet design includes a 90 mm aperture surrounded by four two-layer Nb3Sn coils supported by a stainless steel collar, iron yoke and stainless steel skin. This paper describes the design and fabrication features of the quadrupole models and presents the summary of model tests including quench performance and field quality at 4.5 and 1.9 K.