Author: Yoshiie, T.
Paper Title Page
THPPD024 Irradiation Effects in Superconducting Magnet Materials at Low Temperature 3551
  • M.Y. Yoshida, M.I. Iio, S. Mihara, T. Nakamoto, H. Nishiguchi, T. Ogitsu, M. Sugano, K. Yoshimura
    KEK, Ibaraki, Japan
  • M. Aoki, T. Itahashi, Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • Y. Kuriyama, Y. Mori, B. Qin, K. Sato, Q. Xu, T. Yoshiie
    Kyoto University, Research Reactor Institute, Osaka, Japan
  Superconducting magnets for high intensity accelerators and particle sources are exposed to severe radiation from beam collisions and other beam losses. Neutron fluence on the superconducting magnets for the next generation projects of high energy particle physics, such as LHC upgrades and the COMET experiment at J-PARC, is expected to exceed 1021 n/m2, which is close to the requirements on the fusion reactor magnets. Irradiation effects at low temperature in superconducting magnet materials should be reviewed to estimate the stability of the superconducting magnet system in operation and its life. The pion capture superconducting solenoids for the COMET experiment are designed with aluminum stabilized superconducting cable to reduce the nuclear heating by neutrons. Also, the heat is designed to be transferred in pure aluminum strips. Irradiation effects on the electrical conductance of aluminum stabilizer and other materials are tested at cryogenic temperature using the reactor neutrons. This paper describes the study on the irradiation effects for the magnet developments.