Author: Yokoi, T.
Paper Title Page
MOEPPB003 Status of the PRISM FFAG Design for the Next Generation Muon-to-Electron Conversion Experiment 79
  • J. Pasternak, A. Alekou, M. Aslaninejad, R. Chudzinski, L.J. Jenner, A. Kurup, Y. Shi, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R. Appleby, H.L. Owen
    UMAN, Manchester, United Kingdom
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • J.-B. Lagrange, Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • M. Lancaster
    UCL, London, United Kingdom
  • C. Ohmori
    KEK, Tokai, Ibaraki, Japan
  • T. Planche
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H. Witte
    BNL, Upton, Long Island, New York, USA
  • T. Yokoi
    JAI, Oxford, United Kingdom
  The PRISM Task Force continues to study high intensity and high quality muon beams needed for next generation lepton flavor violation experiments. In the PRISM case such beams have been proposed to be produced by sending a short proton pulse to a pion production target, capturing the pions and performing RF phase rotation on the resulting muon beam in an FFAG ring. This paper summarizes the current status of the PRISM design obtained by the Task Force. In particular various designs for the PRISM FFAG ring are discussed and their performance compared to the baseline one, the injection/extraction systems and matching to the solenoid channels upstream and downstream of the FFAG ring are presented. The feasibility of the construction of the PRISM system is discussed.  
THPPD049 Conceptual Design of a Superconducting Septum for FFAGs 3620
  • H. Witte
    BNL, Upton, Long Island, New York, USA
  • M. Aslaninejad, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • K.J. Peach, T. Yokoi
    JAI, Oxford, United Kingdom
  Funding: This work was supported by STFC grant ST/G008531/1 and EPSRC Grant EP/E032869/1.
The fixed magnetic field in FFAG (Fixed Field Alternating Gradient) accelerators means that particles can be accelerated very rapidly. This makes them attractive candidates for many applications, for example for accelerating muons for a neutrino factory or for charged particle therapy (CPT). To benefit fully from this the particles have to be extracted at the same rate. In combination with the high magnetic rigidity of the particles this represents a significant challenge, especially where variable energy extraction is required, which implies extraction at variable radius. This paper presents a conceptual design of a 4T superconducting septum for the PAMELA accelerator, which is an FFAG for a combined proton/carbon ion therapy facility. The field in the septum is varied as a function of the horizontal position, which allows variable energy extraction without the need for sweeping of the magnetic field.