Author: Yamazaki, Y.
Paper Title Page
MOPPR077 ION CHAMBERS AND HALO RINGS FOR LOSS DETECTION AT FRIB 969
 
  • Z. Liu
    IUCF, Bloomington, Indiana, USA
  • D. Georgobiani, M.J. Johnson, M. Leitner, R.M. Ronningen, T. Russo, M. Shuptar, R.C. Webber, J. Wei, X. Wu, Y. Yamazaki, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
Unlike the high energy proton machines, our radiation transport simulation results show that it will be difficult to use traditional BLMs to detect beam losses for FRIB linac, not only due to the low radiation levels from low energy heavy ion beams, but also resulted by the cross talk effect from one part of the machine to another in the folded machine geometry. A device called “Halo Ring” is introduced as a component of the BLM system to substitute the traditional ion chamber in those regions.
 
 
MOPPD074 Localization of Large Angle Foil Scattering Beam Loss Caused by Multi-Turn Charge-Exchange Injection 535
 
  • S. Kato
    Tohoku University, Graduate School of Science, Sendai, Japan
  • H. Harada, S. Hatakeyama, J. Kamiya, M. Kinsho, K. Yamamoto, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  In the J-PARC RCS, the significant losses were observed at the branch of H0 dump line and the Beam Position Monitor which was put at the downstream of the H0 dump branch duct. These losses were caused by the large angle scattering of the injection and circulating beam at the charge exchange foil. To realize high power operation, we have to mitigate these losses. So, we started to develop a new collimation system in the H0 branch duct and installed in October 2011. In order to optimize this system efficiently, we primarily focused on the relative angle of collimator block from scattering particles. We simulated behavior of particles scattered by foil and produced by collimator block and researched most optimized position and angle of the collimator block. In this process, we devised the method of angular regulation of collimator block. We present the method of angular regulation and performance of this new collimation system.  
 
THPPP081 Status of Injection Energy Upgrade for J-PARC RCS 3921
 
  • N. Hayashi, H. Harada, H. Hotchi, J. Kamiya, P.K. Saha, Y. Shobuda, T. Takayanagi, N. Tani, M. Watanabe, Y. Watanabe, K. Yamamoto, M. Yamamoto, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  The injection energy upgrade for J-PARC RCS is planed in 2013. This includes the power supplies upgrade of injection pulsed magnet system, suppression for leakage field, quadrupole correction magnets, reduction of kicker impedance effect and improvements of beam diagnostic instrumentation. The paper reports the present status.