Author: Xu, S.Y.
Paper Title Page
MOPPD075 Optimization of the Collimation System for the CSNS/RCS 538
 
  • N. Wang, M.Y. Huang, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  Beam loss induced activation of the accelerator components is one of the primary concerns in designing a high intensity machine. The uncontrolled beam loss is required to be less than 1 W/m for hands-on maintenance of the machine. A two stage collimation system is designed in the Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) to localize the beam losses in a restricted area. The parameters of the collimator are optimized in order to obtain high collimation efficiency. The final design of the collimation system is presented. The reliability of the collimation system is estimated for different working points and with closed orbit errors.  
 
TUEPPB004 A Longitudinal Beam Dynamics Code for Proton Synchrotron 1119
 
  • Y.S. Yuan, N. Wang, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  The accelerator of China Spallation Neutron Source (CSNS) consists of an 80 MeV linac and a 1.6 GeV Rapid Cycling Synchrotron (RCS). Longitudinal beam dynamics study is one of the most important issues for RCS beam dynamics design. However, the existing codes cannot meet the requirement of longitudinal beam dynamics for CSNS/RCS. A new code has been developed for longitudinal beam dynamics design and simulation. The code can perform the voltage and phase curves design for non-sinusoidal magnetic field of dipole in an RCS cycle, with the fundamental RF mode and dual harmonic mode. The code can also be used for the beam simulation with longitudinal space charge effect, including the effects of higher order mode of RF cavities. By using the code, the longitudinal beam dynamics of CSNS/RCS was designed and optimized, and the simulation study with dual harmonics higher order modes of RF cavity was done, and the simulation results are presented.  
 
THEPPB005 Study on the Injection Optimization and Transverse Coupling for CSNS/RCS 3240
 
  • M.Y. Huang, J. Qiu, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  The injection system of the China Spallation Neutron Source uses H stripping and phase space painting method to fill large ring acceptance with the linac beam of small emittance. The emittance evolution, beam losses, and collimation efficiency during the injection procedures for different injection parameters, such as the injection emittances, starting injection time, twiss parameters and momentum spread, were studied, and then the optimized injection parameters was obtained. In addition, the phase space painting scheme which also affect the emittance evolution and beam losses were simulated and the optimization range of phase space painting were obtained. There will be wobble in the power supply of the injection bumps, and the wobble effects were presented. In order to study the transverse coupling, the injection procedures for different betatron tunes and momentum spreads were studied.