Author: Xu, S.
Paper Title Page
MOPPP058 Improvements to the APS Booster Injection Controllaw Process 693
  • C. Yao, F. Lenkszus, H. Shang, S. Xu
    ANL, Argonne, USA
  Funding: Work supported by U.S. Department of Energy, Offices of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06- CH11357.
The APS booster is a 7-GeV electron synchrotron with a 0.5-second cycle time. The booster runs a set of injection control programs that corrects the injection beam trajectory based on the beam history of two BPMs. An IOC process calculates the I and Q components of beam oscillation from turn-by turn beam position samples over the first 64 turns. The booster injection control programs apply phase, energy, and transverse angle correction based on the result of the IOC processing. The initial system was installed in 2007. Since installation the system has mostly worked well for normal user operations. However, occasionally the system has yielded inconsistent results. Recently we reviewed the signal and processes involved in this system and made necessary upgrades to some components, including selection of a new set of two input BPMs, optimization of FFT parameters, and addition of an injection tune control program. These upgrades have significantly improved the effectiveness and consistency of the system. We report the findings, analysis, and results.
WEPPP070 Simulation of the APS Storage Ring Orbit Real-Time Feedback System Upgrade Using MATLAB 2870
  • S. Xu, G. Decker, R.I. Farnsworth, F. Lenkszus, H. Shang, X. Sun
    ANL, Argonne, USA
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source (APS) storage ring orbit real-time feedback (RTFB) system plays an important role in stabilizing the orbit of the stored beam. An upgrade is planned that will improve beam stability by increasing the correction bandwidth to 200 Hz or higher. To achieve this, the number of available steering correctors and beam position monitors (BPMs) will be increased, and the sample rate will be increased by an order of magnitude. An additional benefit will be the replacement of aging components. Simulations have been performed to quantify the effects of different system configurations on performance.