Author: Wolff, D.
Paper Title Page
WEPPC059 A Two-stage Injection-locked Magnetron for Accelerators with Superconducting Cavities 2348
  • G.M. Kazakevich, G. Flanagan, R.P. Johnson, F. Marhauser, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • B. Chase, S. Nagaitsev, R.J. Pasquinelli, N. Solyak, V. Tupikov, D. Wolff, V.P. Yakovlev
    Fermilab, Batavia, USA
  Funding: Supported in part by SBIR Grant 4743 11SC06261
A concept for a two-stage injection-locked CW magnetron intended to drive Superconducting Cavities (SC) for intensity-frontier accelerators has been proposed. The concept is based on a theoretical model that considers a magnetron as a forced oscillator; the model has been experimentally verified with a 2.5 MW pulsed magnetron. The two-stage CW magnetron can be used as a RF power source for Fermilab’s Project-X to feed separately each of the SC of the 8 GeV pulsed linac. For Project-X the 1.3 GHz two-stage magnetron with output power of 20-25 kW and expected output/input power ratio of about 35-40 dB would operate in a quasi-CW mode with a pulse duration ≤ 10 ms and repetition rate of 10 Hz. The magnetrons for both stages should be based on the commercial prototypes to decrease the cost of the system. An experimental model of the two-stage CW S-band magnetron with peak power of 1 kW, with pulse duration of 1-10 ms, has been developed and built for study. A description of the theoretical and experimental models, simulations, and experimental results are presented and discussed in this work.