Author: Wiseman, M.
Paper Title Page
WEPPC092 12 GeV Upgrade Project - Cryomodule Production 2429
 
  • J. Hogan, A. Burrill, G.K. Davis, M.A. Drury, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is producing ten 100+MV SRF cryomodules (C100) as part of the CEBAF 12 GeV Upgrade Project. Once installed, these cryomodules will become part of an integrated accelerator system upgrade that will result in doubling the energy of the CEBAF machine from 6 to 12 GeV. This paper will present a complete overview of the C100 cryomodule production process. The C100 cryomodule was designed to have the major components procured from private industry and assembled together at Jefferson Lab. In addition to measuring the integrated component performance, the performance of the individual components is verified prior to being released for production and assembly into a cryomodule. Following a comprehensive cold acceptance test of all subsystems, the completed C100 cryomodules are installed and commissioned in the CEBAF machine in preparation of accelerator operations. This overview of the cryomodule production process will include all principal performance measurements, acceptance criterion and up to date status of current activities.
The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.
 
 
WEPPD007 Integrated Thermal Analysis of the FRIB Cryomodule Design 2510
 
  • Y. Xu, M. Barrios, F. Casagrande, M.J. Johnson, M. Leitner
    FRIB, East Lansing, Michigan, USA
  • D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
Thermal analysis of the FRIB cryomodule design is performed to determine the heat load to the cryogenic plant, to minimize the cryogenic plant load, to simulate thermal shield cool down as well as to determine the pressure relief sizes for failure conditions. Static and dynamic heat loads of the cryomodules are calculated and the optimal shield temperature is determined to minimize the cryogenic plant load. Integrated structural and thermal simulations of the 1100-O aluminium thermal shield are performed to determine the desired cool down rate to control the temperature profile on the thermal shield and to minimize thermal expansion displacements during the cool down. Pressure relief sizing calculations for the SRF helium containers, solenoids, helium distribution piping, and vacuum vessels are also described.
Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.
 
 
WEPPC038 Status of the Short-Pulse X-ray Project at the Advanced Photon Source 2292
 
  • A. Nassiri, N.D. Arnold, T.G. Berenc, M. Borland, B. Brajuskovic, D.J. Bromberek, J. Carwardine, G. Decker, L. Emery, J.D. Fuerst, A.E. Grelick, D. Horan, J. Kaluzny, F. Lenkszus, R.M. Lill, J. Liu, H. Ma, V. Sajaev, T.L. Smith, B.K. Stillwell, G.J. Waldschmidt, G. Wu, B.X. Yang, Y. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • G. Cheng, G. Ciovati, P. Dhakal, G.V. Eremeev, J.J. Feingold, R.L. Geng, J. Henry, P. Kneisel, K. Macha, J.D. Mammosser, J. Matalevich, A.D. Palczewski, R.A. Rimmer, H. Wang, K.M. Wilson, M. Wiseman
    JLAB, Newport News, Virginia, USA
  • Z. Li, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents’* deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.
* A. Zholents et al., NIM A 425, 385 (1999).
 
 
WEPPD006 Design of the FRIB Cryomodule 2507
 
  • M.J. Johnson, M. Barrios, J. Binkowski, S. Bricker, F. Casagrande, A.D. Fox, B.R. Lang, M. Leitner, S.J. Miller, T. Nellis, J.P. Ozelis, X. Rao, J. Weisend, Y. Xu
    FRIB, East Lansing, Michigan, USA
  • D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
An advanced, modular bottom-supported cryomodule design is described which is highly optimized for mass-production and efficient precision-assembly. The FRIB driver linac uses 4 types of superconducting resonators and 2 solenoid lengths which in turn require 7 individual cryomodule configurations. To meet alignment tolerances a precision-machined bolted cryomodule rail system is described. A novel, kinematic mounting system of the cold mass is introduced which allows for thermal contractions while preserving alignment. A first prototype will incorporate a wire position monitor for alignment verification. The cold alignment structure is supported by composite posts which also function as thermal isolators. The cryogenic system provides separate 2 K and 4.5 K liquid helium lines to cavities and solenoids. Details of the JT valves, heat exchanger, cool-down circuit and junction to cryogenic line will be provided. Transient cool-down was simulated for stresses and buckling failure. A 1100-O Aluminum shield is used as a thermal radiation shield. The paper also describes cryomodule interfaces with the linac tunnel, the RF input cables, and the cryogenic distribution system.
Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.
 
 
THPPC029 High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source 3344
 
  • G.J. Waldschmidt, B. Brajuskovic, J. Liu, M.E. Middendorf, A. Nassiri, T.L. Smith, G. Wu
    ANL, Argonne, USA
  • J. Henry, J.D. Mammosser, R.A. Rimmer, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.