Author: White, G.R.
Paper Title Page
MOOAB03 FACET First Beam Commissioning 46
 
  • G. Yocky, C.I. Clarke, W.S. Colocho, F.-J. Decker, M.J. Hogan, N. Lipkowitz, J. Nelson, P.M. Schuh, J.T. Seeman, J. Sheppard, H. Smith, T.J. Smith, M. Stanek, Y. Sun, J.L. Turner, M.-H. Wang, S.P. Weathersby, G.R. White, U. Wienands, M. Woodley
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
The FACET (Facility for Advanced aCcelerator Experimental Tests) facility at SLAC has been under Construction since summer 2010. Its goal is to produce ultrashort and transversely small bunches of very high intensity (20kA peak current) to facilitate advanced acceleration experiments like PWFA and DLA. In June of 2011 the first electron beam was brought into the newly constructed bunch-compression chicane. Commissioning work included restarting the linac and damping ring, verifying hardware, establishing a good beam trajectory, verifying the optics of the chicane, commissioning diagnostic devices for transverse and longitudinal bunch size, and tuning up the beam size and bunch compression. Running a high-intensity beam through the linac without BNS damping and with large energy spread is a significant challenge. Optical aberrations as well as wakefields conspire to increase beam emittance and the bunch compression is quite sensitive to details of the beam energy and orbit, not unlike what will be encountered in a linear-collider final-focusing system. In this paper we outline the steps we took while commissioning as well as the challenges encountered and how they were overcome.
 
slides icon Slides MOOAB03 [9.167 MB]  
 
MOPPR044 Optics and Emittance Studies using the ATF2 Multi-OTR System 879
 
  • J. Alabau-Gonzalvo, C. Blanch Gutierrez, A. Faus-Golfe, J.J. García-Garrigós, J. Resta-López
    IFIC, Valencia, Spain
  • J. Cruz, D.J. McCormick, G.R. White, M. Woodley
    SLAC, Menlo Park, California, USA
 
  Funding: Funding Agency: FPA2010-21456-C02-01. Work supported in part by Department of Energy Contract DE-AC02-76SF00515.
A multi-OTR system (4 beam ellipse diagnostic devices based on optical transition radiation) was installed in the extraction line of ATF2 and has been fully operational since September 2011. The OTRs have been upgraded with a motorized zoom-control lens system to improve beam finding and accommodate different beam sizes. The system is being used routinely for beam size and emittance measurements as well as coupling correction. In this paper we present measurements performed during the winter run of 2011 and the early 2012 runs. We show the reconstruction of twiss parameters and emittance, discuss the reliability of the OTR system and show comparisons with simulations. We also present new work to calculate all 4 coupling terms and form the “4-D” intrinsic emittance of the beam utilizing all the information available from the 2-D beam profile images. We also show details and experimental results for performing a 1-shot automated coupling correction.
 
 
TUPPR047 Vibration Model Validation for Linear Collider Detector Platforms 1921
 
  • K.J. Bertsche, J.W. Amann, T.W. Markiewicz, M. Oriunno, A.W. Weidemann, G.R. White
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.
 
 
WEPPR040 Intensity Effects of the FACET Beam in the SLAC Linac 3024
 
  • F.-J. Decker, N. Lipkowitz, J. Sheppard, G.R. White, U. Wienands, M. Woodley, G. Yocky
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
The beam for FACET (Facility for Advanced aCcelerator Experimental Tests) at SLAC requires an energy-time correlation ("chirp") along the linac, so it can be compressed in two chicanes, one at the mid point in sector 10 and one W-shaped chicane just before the FACET experimental area. The induced correlation has the opposite sign to the typical used for BNS damping, and therefore any orbit variations away from the center kick the tail of the beam more than the head, causing a shear in the beam and emittance growth. Any dispersion created along the linac has similar effects due to the high (>1.2% rms) energy spread necessary for compression. The initial huge emittances could be reduced by a factor of 10, but were still bigger than expected by a factor of 2-3. Normalized emittance of 2 um-rad in Sector 2 blew up to 150 um-rad in Sector 11 but could be reduced to about 6-12 um-rad for the vertical plane although the results were not very stable. Investigating possible root causes for this, we found locations where up to 10 mm dispersion was created along the linac, which were finally verified with strong steering and up to 7 mm settling of the linac accelerator at these locations.