Author: Warsop, C.M.
Paper Title Page
MOPPD063 A 180 MeV Injection System for the ISIS Synchrotron 511
 
  • B. Jones, D.J. Adams, M.C. Hughes, S.J.S. Jago, H. V. Smith, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Facility at the Rutherford Appleton Laboratory in the UK produces intense neutron and muon beams for condensed matter research. It operates at 50 Hz accelerating 3x1013 protons per pulse via a 70 MeV H linac and an 800 MeV proton synchrotron, delivering a mean beam power of 0.2 MW. A favoured first step to upgrade ISIS towards the megawatt regime is replacement of the linac with a new 180 MeV injector. Studies of this upgrade, which aims to increase mean beam power up to 0.5 MW are continuing. This paper summarises designs for a new injection region including beam dynamics and related hardware.  
 
MOPPD064 Simulation of Double Layer Carbon Stripping Foils for ISIS Injection Upgrades 514
 
  • H. V. Smith, D.J. Adams, B. Jones, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Irie, Y. Takeda
    KEK, Ibaraki, Japan
 
  ISIS, the pulsed neutron and muon spallation source located at the Rutherford Appleton Laboratory (UK), currently delivers a mean beam power of 0.2 MW to target. A 70 MeV H– linear accelerator feeds into a 50 Hz, 800 MeV proton synchrotron, accelerating up to 3·1013 protons per pulse. Potential injection scheme upgrades, aiming to raise average beam power towards 0.5 MW with a new 180 MeV linear accelerator, continue to be studied. This paper highlights recent results from temperature studies of double layer carbon foils, suitable for injection at 180 MeV into ISIS, using ANSYS. Experimental data from KEK was used to benchmark models and the variation of temperature as a function of foil separation was considered.  
 
THPPP088 Beam Loss Studies of the ISIS Synchrotron Using ORBIT 3942
 
  • D.J. Adams
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • I.S.K. Gardner, B. Jones, B.G. Pine, A. Seville, H. V. Smith, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS synchrotron forms part of the accelerator chain for the Spallation Neutron Source at RAL, UK. The synchrotron is an 800 MeV, 50Hz , RCS accelerating ~2.8·1013 protons per cycle. Beam loss is localized in two super periods of the ring using a system of collimators. The injection and acceleration processes, vacuum vessels and collimation systems have been modeled using the particle tracking code ORBIT. This paper presents simulation results in comparison to measurements of longitudinal profiles and beam loss.