Author: Walz, D.R.
Paper Title Page
TUEPPB015 Generation of Narrow-Band Coherent Tunable Terahertz Radiation using a Laser-Modulated Electron Beam 1146
 
  • M.P. Dunning, C. Hast, E. Hemsing, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, Z.M. Szalata, D.R. Walz, S.P. Weathersby, D. Xiang
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.
The technical layout and initial results of an experiment to generate narrow-band, coherent, tunable terahertz (THz) radiation through the down-conversion of the frequency of optical lasers using a laser-modulated electron beam are described. In this experiment a 120 MeV electron beam is first energy modulated by two lasers with different wavelengths. After passing through a dispersive section, the energy modulation is converted into a density modulation at THz frequencies. This density-modulated beam will be used to generate narrow-band THz radiation using a coherent transition radiator inserted into the beam path. The central frequency of the THz radiation can be tuned by varying the wavelength of one of the two lasers or the energy chirp of the electron beam. The experiment is being performed at the NLCTA at SLAC, and will utilize the existing Echo-7 beamline, where echo-enabled harmonic generation (EEHG) was recently demonstrated.
 
 
TUPPR072 Status of ESTB: A Novel Beam Test Facility at SLAC 1990
 
  • M.T.F. Pivi, M.P. Dunning, H. Fieguth, C. Hast, R.H. Iverson, J. Jaros, R.K. Jobe, L. Keller, T.V.M. Maruyama, D.R. Walz, M. Woods
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515
End Station A Test Beam (ESTB) is a test beam line at SLAC in the large End Station A (ESA) experimental hall. It uses a fraction of the bunches of the 14.7 GeV electron beam from the Linac Coherent Light Source (LCLS). ESTB provides a unique test beam for particle and particle astrophysics detector research, accelerator instrumentation and accelerator R&D, development of radiation-hard detectors, and material damage studies. It has exceptionally clean and well-defined secondary electron beams, a huge experimental area and good existing conventional facilities. Recently, a new kicker magnet has been installed to divert 5 Hz of the LCLS low energy beam into the A-line. The full installation will include 4 kicker magnets to allow diversion of high energy beams. A new beam dump and a new Personnel Protection System (PPS) have been built in ESA. In stage II, a secondary hadron target will be able to produce pions up to about 12 GeV/c at 1 particle/pulse. This paper reports the progress on ESTB construction and commissioning.
 
 
TUYB02 Manufacture and Testing of Optical-scale Accelerator Structures from Silicon and Silica 1050
 
  • R.J. England, E.R. Colby, R. Laouar, C. McGuinness, B. Montazeri, R.J. Noble, K. Soong, J.E. Spencer, D.R. Walz, Z. Wu
    SLAC, Menlo Park, California, USA
  • R.L. Byer, C.M. Chang, K.J. Leedle, E.A. Peralta
    Stanford University, Stanford, California, USA
  • B.M. Cowan
    Tech-X, Boulder, Colorado, USA
  • M. Qi
    Purdue University, West Lafayette, Indiana, USA
 
  We report on recent progress in the design, manufacture and testing of optical-scale accelerator structures made from silicon and silica. The potential of these structures for the development of extremely compact, efficient, and low cost accelerators producing attosecond electron pulses will be discussed, together with various possible applications.  
slides icon Slides TUYB02 [17.226 MB]  
 
WEYB02
Hard X-ray Self-seeding at the Linac Coherent Light Source  
 
  • P. Emma, J.W. Amann, F.-J. Decker, Y.T. Ding, Y. Feng, J.C. Frisch, D. Fritz, J.B. Hastings, Z. Huang, J. Krzywinski, H. Loos, A.A. Lutman, H.-D. Nuhn, D.F. Ratner, J.A. Rzepiela, S. Spampinati, D.R. Walz, J.J. Welch, J. Wu, D. Zhu
    SLAC, Menlo Park, California, USA
  • W. Berg, R.R. Lindberg, D. Shu, Yu. Shvyd'ko, S. Stoupin, E. Trakhtenberg, A. Zholents
    ANL, Argonne, USA
  • V.D. Blank, S. Terentiev
    TISNCM, Troitsk, Russia
 
  Funding: Work supported by US Department of Energy, contract number DE-AC02-76SF00515.
We report on experimental results of FEL self-seeding with Angstrom wavelengths at the Linac Coherent Light Source (LCLS) at SLAC. The scheme, suggested at DESY*, replaces the 16th 4-m long undulator segment (out of 33 total) with a weak magnetic chicane and a diamond-based monochromator in Bragg transmission geometry. The monochromatized SASE FEL pulse from the first half of the undulator line then seeds the second half. This demonstration of hard x-ray self-seeding is shown to narrow the FEL bandwidth by a factor 40-50, allows longitudinally coherent x-ray pulses near the Fourier-transform limit, and may eventually allow an increases in peak brightness by 1-2 orders of magnitude after applying an aggressive undulator field taper.
* G. Geloni, V. Kocharyan, E. Saldin, DESY 10-133, Aug. 2010.
 
slides icon Slides WEYB02 [5.946 MB]  
 
WEPPP056 Positron PWFA Simulations for FACET 2834
 
  • S.J. Gessner, E. Adli, S. Corde, R.J. England, J.T. Frederico, M.J. Hogan, S.Z. Li, M.D. Litos, T.O. Raubenheimer, D.R. Walz, Z. Wu
    SLAC, Menlo Park, California, USA
  • W. An, W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported [optional: in part] by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
When a positron beam enters a plasma, plasma electrons are drawn in toward the beam axis, creating a region of extremely large charge density with complicated, nonlinear fields. Few analytic solutions exist to describe these fields, and this necessitates the use of simulations to model positron beam and plasma interactions. This presentation should cover recent work on positron PWFA simulations using the QuickPIC* particle-in-cell code. I will discuss the computational challenges associated with positron PWFA and specific applications of the simulations for future experimental tests at the FACET user facility at SLAC.
* C. Huang et al., "QuickPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas," J. Comp. Phys. 217, 658 (2006).