Author: Voelker, J.     [Völker, J.]
Paper Title Page
TUPPD062 The Source of Emittance Dilution and photoemission tunneling effect in Photocathode RF Guns 1542
 
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • R. Barday, T. Kamps, J. Knobloch, A.N. Matveenko, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Funding: Work supported by Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association VH-NG-636 and HRJRG-214.
Experimental data on HoBiCaT SRF photoinjector give an emittance which is much larger than the predicted thermal emittance. Modeling of photocathode RF gun beams with the different imperfections of experimental setup (alignment errors, inhomogeneity of quantum efficiency and laser power distributions on the cathode) is given. The main reason for the beam emittance dilution is photocathode field imperfections induced by field emitters that change the local electric field. Some field models of such photocathodes are tested in the simulations. The dependence of photocathode beam currents on the surface electric field was measured with the HoBiCaT SRF Photoinjector. The dependence can be explained by the tunneling effect described by Fowler-Nordheim like equation and is difficult to explain by usually applying Schottky effect.
 
 
TUPPD051 Operational Experience with the Nb/Pb SRF Photoelectron Gun 1518
 
  • T. Kamps, W. Anders, R. Barday, A. Jankowiak, J. Knobloch, O. Kugeler, A.N. Matveenko, A. Neumann, T. Quast, J. Rudolph, S.G. Schubert, J. Völker
    HZB, Berlin, Germany
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • R. Nietubyć
    The Andrzej Soltan Institute for Nuclear Studies, Centre Świerk, Świerk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • J. Smedley
    BNL, Upton, Long Island, New York, USA
  • J. Teichert
    HZDR, Dresden, Germany
  • V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • I. Will
    MBI, Berlin, Germany
 
  SRF photoelectron guns offer the promise of high brightness, high average current beam production for the next generation of accelerator driven light sources such as free electron lasers, THz radiation sources or energy-recovery linac driven synchrotron radiation sources. In a first step a fully superconducting RF (SRF) photoelectron gun is under development by a collaboration between HZB, DESY, JLAB, BNL and NCBJ. The aim of the experiment is to understand and improve the performance of a Nb SRF gun cavity coated with a small metallic Pb cathode film on the cavity backplane. This paper describes the highlights from the commissioning and beam parameter measurements. The main focus is on lessons learned from operation of the SRF gun.