Author: Velev, G.
Paper Title Page
THPPD017 Mu2e AC Dipole 300 kHz and 5.1 MHz Tests and Comparison of Nickel-Zinc Ferrites 3533
  • L. Elementi, K.R. Bourkland, D.J. Harding, V.S. Kashikhin, A.V. Makarov, H. Pfeffer, G. Velev
    Fermilab, Batavia, USA
  To suppress any background events coming from the inter-bunch proton interactions during the muon transport and decay window for the Mu2e experiment, a beam extinction scheme based on two dipoles running at ~300 kHz and 5.1 MHz is considered. The effective field of these magnets is synchronized to the proton bunch spacing in such a way that the bunches are transported at the sinus nodes. Two types Ni-Zn ferrites are considered for these dipoles. Ferrites, their characteristics and ferrites selection is herein discussed through measurements performed under conditions close to operational. The excitation system and the measurement of some characteristics of the magnetic field and field shape and measurement mechanism are also presented.  
THPPD034 Quench Performance and Field Quality of 90-mm Nb3Sn Quadrupoles of TQC Series 3581
  • G. Chlachidze, N. Andreev, R. Bossert, J. DiMarco, V. Kashikhin, M.J. Lamm, A. Nobrega, I. Novitski, M.A. Tartaglia, G. Velev, A.V. Zlobin
    Fermilab, Batavia, USA
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
A series of accelerator quality Nb3Sn quadrupole models has been developed, fabricated and tested at Fermilab. The magnet design includes a 90 mm aperture surrounded by four two-layer Nb3Sn coils supported by a stainless steel collar, iron yoke and stainless steel skin. This paper describes the design and fabrication features of the quadrupole models and presents the summary of model tests including quench performance and field quality at 4.5 and 1.9 K.
THPPD038 Measurements of the Persistent Current Decay and Snapback Effect in Nb3Sn Accelerator Prototype Magnets at Fermilab 3593
  • G. Velev, G. Chlachidze, J. DiMarco, V. Kashikhin
    Fermilab, Batavia, USA
  In recent years, Fermilab has been performing an intensive R&D program on Nb3Sn accelerator magnets. This program has included dipole and quadrupole magnets for different programs and projects, including LARP and VLHC. A systematic study of the persistent current decay and snapback effect in the fields of these magnets was executed at the Fermilab Magnet Test Facility. The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and flattop and injection plateau durations. This study has mostly focused on the dynamic behavior of the normal sextupole and dodecapole components in dipole and quadrupole magnets respectively. The paper summarizes the recent measurements and presents a comparison with previously measured NbTi magnets.