Author: Vanbavinckhove, G.
Paper Title Page
MOPPC006 90m Optics Studies and Operation in the LHC 130
 
  • H. Burkhardt, G.J. Müller, S. Redaelli, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • S. Cavalier
    LAL, Orsay, France
 
  A high β* = 90 m optics was commissioned and used for first very forward physics operation in the LHC in 2011. The experience gained from working with this optics in 5 studies and operation periods in 2011 was very positive. The target β* = 90 m was reached by a de-squeeze from the standard 11 m injection and ramp optics on the first attempt and collisions and first physics results obtained in the second study. The optics was measured and corrected with good precision. The running conditions were very clean and allowed for measurements with roman pots very close to the beam.  
 
TUPPC056 Optics Measurements and Corrections at RHIC 1299
 
  • M. Bai, J.N. Aronson, M. Blaskiewicz, Y. Luo, V.H. Ranjbar, G. Robert-Demolaize, S.M. White
    BNL, Upton, Long Island, New York, USA
  • G. Vanbavinckhove
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The further improvement of RHIC luminosity performance requires more precise understanding of the RHIC modeling. Hence, it is necessary to minimize the beta-beat, deviation of measured beta function from the calculated beta functions based on an model. The correction of beta-beat also opens up the possibility of exploring operating RHIC polarized protons at a working point near integer, a preferred choice for both luminosity as well as beam polarization. The segment-by-segment technique for reducing beta-beat demonstrated in the LHC operation for reducing the beta-beat was first tested in RHIC during its polarized proton operation in 2011. It was then fully implemented during the RHIC polarized proton operation in 2012. This paper reports the commissioning results. Future plan is also presented.
 
 
TUPPR068 The Achromatic Telescopic Squeezing Scheme: Basic Principles and First Demonstration at the LHC 1978
 
  • S.D. Fartoukh, R. De Maria, B. Goddard, W. Höfle, M. Lamont, G.J. Müller, L. Ponce, S. Redaelli, R.J. Steinhagen, M. Strzelczyk, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
 
  The Achromatic Telescopic Squeezing (ATS) scheme [1] is a novel squeezing mechanism enabling the production of very low β* in circular colliders. The basic principles of the ATS scheme will be reviewed together with its strong justification for the High-Luminosity LHC Project. In this context, a few dedicated beam experiments were meticulously prepared and took place at the LHC in 2011. The results obtained will be highlighted, demonstrating already the potential of the ATS scheme for any upgrade project relying on a strong reduction of β*.
[1] S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme For The LHC Upgrade," IPAC'11, WEPC037, p. 2088 (2001).