Author: Titberidze, M.
Paper Title Page
TUPPD079 Design of an L-Band RF Photoinjector for the Idaho Accelerator Center 44 MeV Linac 1584
 
  • M. Titberidze, A.W. Hunt, D.P. Wells
    IAC, Pocatello, IDAHO, USA
  • Y. Kim
    ISU, Pocatello, Idaho, USA
 
  At the Idaho Accelerator Center (IAC) of Idaho State University, we have been operating a 44 MeV L-band RF (1300 MHz) linear accelerator (LINAC) for various user applications such as medical isotope production, Laser Compton Scattering (LCS), positron annihilation energy spectroscopy, and photo fission. But the LINAC is not optimized properly to supply high quality electron beam for those experiments due to limitations of an existing 85 kV thermionic DC gun. In the near future, we are planning to use the L-band LINAC for new user applications such as Accelerator Driven subcritical nuclear reactor System (ADS), photon tagging facility, Ultrafast Electron Diffraction (UED) facility, and high power coherent Terahertz light source facility. Therefore, recently, we have been studying a future upgrade of the L-band LINAC with an RF photoinjector using ASTRA code. In this paper, we describe ASTRA simulation results and a new layout of the L-band LINAC, which is based on an L-band 1.5 cell RF photoinjector. Then, we describe its expected performance for two different single bunch charges (1 nC and 5 nC).  
 
THPPR068 Laser Compton Scattering X-rays as a Tool for K-edge Densitometry 4133
 
  • M. Titberidze, K. Chouffani
    IAC, Pocatello, IDAHO, USA
 
  There is a huge interest in bright and tunable X-ray sources. These sources can be used in various research fields, including medical, biological and industrial fields. Laser Compton Scattering (LCS) technique gives us possibility to generate tunable, quasi monochromatic and polarized X-ray beam. One of the applications of LCS is the detection and quantitative identification of special nuclear materials (SNM) using K-edge densitometry(KED)method. Our group was the first one who has used a quasi-monochromatic LCS source to carry out KED experiments. The experiments showed that LCS technique could be used for SNM detection and quantification.