Author: Suykerbuyk, R.
Paper Title Page
WEPPR069 Measurements and Simulations of Transverse Coupled-Bunch Instability Rise Times in the LHC 3087
  • N. Mounet, R. Alemany-Fernandez, W. Höfle, D. Jacquet, V. Kain, E. Métral, L. Ponce, S. Redaelli, G. Rumolo, R. Suykerbuyk, D. Valuch
    CERN, Geneva, Switzerland
  In the current configuration of the LHC, multibunch instabilities due to the beam-coupling impedance would be in principle a critical limitation if they were not damped by the transverse feedback. For the future operation of the machine, in particular at higher bunch intensities and/or higher number of bunches, one needs to make sure the coupled-bunch instability rise times are still manageable by the feedback system. Therefore, in May 2011 experiments were performed to measure those rise times and compare them with the results obtained from the LHC impedance model and the HEADTAIL wake fields simulation code. At injection energy, agreement turns out to be very good, while a larger discrepancy appears at top energy.