Author: Sukhanov, A.I.
Paper Title Page
WEPPC049 Individual RF Test Results of the Cavities Used in the First US-built ILC-type Cryomodule 2321
 
  • A. Hocker, A.C. Crawford, E.R. Harms, A. Lunin, D.A. Sergatskov, A.I. Sukhanov
    Fermilab, Batavia, USA
  • G.V. Eremeev, R.L. Geng
    JLAB, Newport News, Virginia, USA
  • J.P. Ozelis
    FRIB, East Lansing, USA
 
  Funding: Work supported in part by the U.S. Department of Energy under Contract No. DE-AC02-07CH11359.
Eight 1.3-GHz, nine-cell SRF cavities have been installed in a cryomodule intended to demonstrate the ILC design goal of 31.5 MV/m. These cavities all underwent two types of individual RF testing: a low-power continuous-wave test of the “bare” cavity and a high-power pulsed test of the “dressed” cavity. Presented here is a discussion of the results from these tests and a comparison of their performance in the two configurations.
 
 
WEPPC054 Resonance Excitation of Longitudinal High Order Modes in Project X Linac 2336
 
  • A.I. Sukhanov, M.H. Awida, I.V. Gonin, T.N. Khabiboulline, A. Lunin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.  
 
WEPPR029 Alternative Cavity for H E Part of the Project X linac 2997
 
  • A. Lunin, A. Saini, N. Solyak, A.I. Sukhanov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  An alternative superconducting elliptical cavity is suggested for High Energy (HE) part of the Project X linac. The cavity is suitable to operate at CW regime with high beam current (10 mA), which is critical for Accelerator-Driven Subcritical (ADS) systems and for intense muon source for future Neutrino Factory or Muon Collider. We present the algorithm of the cavity shape optimization, comprehensive tolerances analysis and the solution for monopole High Order Modes (HOM) damping. Based on these results we estimated the probabilities of cryogenic losses per cryomodule and a growth of the beam longitudinal emittance due to the resonance excitation of monopole HOMs in the HE linac for Project X.  
 
WEPPC052 High Gradient Tests of the Fermilab SSR1 Cavity 2330
 
  • T.N. Khabiboulline, C.M. Ginsburg, I.V. Gonin, R.L. Madrak, O.S. Melnychuk, J.P. Ozelis, Y.M. Pischalnikov, L. Ristori, A.M. Rowe, D.A. Sergatskov, A.I. Sukhanov, I. Terechkine, R.L. Wagner, R.C. Webber, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  In Fermilab we are build and tested several superconducting Single Spoke Resonators (SSR1, β=0.22) which can be used for acceleration of low beta ions. Fist two cavities performed very well during cold test in Vertical Test Station at FNAL. One dressed cavity was also tested successfully in Horizontal Test Station. Currently we are building 8 cavity cryomodule for PIXIE project. Additional 10 cavities were manufactured in the industry and ongoing cold test results will be presented in this poster.