Author: Storms, S.
Paper Title Page
THPPC046 Normal Conducting Radio Frequency x-band Deflecting Cavity Fabrication and Validation 3389
 
  • R.B. Agustsson, L. Faillace, A.Y. Murokh, S. Storms
    RadiaBeam, Santa Monica, USA
  • D. Alesini
    INFN/LNF, Frascati (Roma), Italy
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: U.S. DOE SBIR grant DE-FG02-05ER84370
An X-band Traveling wave Deflector mode cavity (XTD) has been developed and fabricated at Radiabeam Technologies to perform longitudinal characterization of the sub-picosecond ultra-relativistic electron beams. The device is optimized for the 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory, and is scalable to higher energies. An XTD is designed to operate at 11.424 GHz, and features short filling time, femtosecond resolution, and a small footprint. RF design, structure fabrication, cold testing results and commissioning plans are presented.
 
 
THPPR069 Compact, Inexpensive X-Band Linacs as Radioactive Isotope Source Replacements 4136
 
  • S. Boucher, R.B. Agustsson, X.D. Ding, L. Faillace, P. Frigola, A.Y. Murokh, M. Ruelas, S. Storms
    RadiaBeam, Santa Monica, USA
 
  Funding: Work supported by DNDO Phase II SBIR HSHQDC-10-C-00148 and DOE Phase II SBIR DE-SC0000865.
Radioisotope sources are still commonly used in a variety of industrial and medical applications. The US National Research Council has identified as a priority the replacement of high-activity sources with alternative technologies, due to the risk of accidents and diversion by terrorists for use in radiological dispersal devices (“dirty bombs”). RadiaBeam Technologies is developing novel, compact, inexpensive linear accelerators for use in a variety of such applications as cost-effective replacements. The technology is based on the MicroLinac (originally developed at SLAC), an X-band linear accelerator powered by an inexpensive and commonly available magnetron. Prototypes are currently under construction. This paper will describe the design, engineering, fabrication and future testing of these linacs at RadiaBeam. Future development plans will also be discussed.