Author: Stadlmann, J.
Paper Title Page
WEIC05
Future Accelerators for Secondary Beam Production  
 
  • O.K. Kester
    IAP, Frankfurt am Main, Germany
  • O.K. Kester, J. Stadlmann
    GSI, Darmstadt, Germany
 
  In recent years Radioactive Ion Beam facilities such as FAIR and FRIB have increasingly become drivers for advanced technical developments in the area of superconducting magnets and resonators, radiation detectors, radiation resistant materials and electronics and high power target. This talk discusses anticipated progress in these technologies and identifies links between RIB development and other large, ongoing efforts in particle accelerators for industrial and basic research applications.  
slides icon Slides WEIC05 [10.629 MB]  
 
WEPPD028 Collimators and Materials for High Intensity Heavy Ion Synchrotrons 2564
 
  • J. Stadlmann, H. Kollmus, P.J. Spiller, I. Strašík, N.A. Tahir, M. Tomut, C. Trautmann
    GSI, Darmstadt, Germany
  • L.H.J. Bozyk
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Funded by EU FP7 WP8 ColMat and Federal Republic of Germany
The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat)of the EU research framework EuCARD we investigate new materials and methods for beam collimation and machine protection. TWe present an overview of these activities at the GSI Helmholtzzentrum für Schwerioneforschung in Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advances composite materials for collimation system upgrades of present and construction of future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programm have already been reached before the end of the funding period. A summary of the obtained results will be presented.
 
 
THPPP001 High Intensity Intermediate Charge State Heavy Ions in Synchrotrons 3719
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, H. Reich-Sprenger, J. Stadlmann
    GSI, Darmstadt, Germany
  • Y. El-Hayek
    FIAS, Frankfurt am Main, Germany
 
  In order to reach the desired FAIR intensities for heavy ions, SIS18 and SIS100 have to be operated with intermediate charge states. Operation with intermediate charge state heavy ions at the intensity level of about 1011 ions per cycle has never been demonstrated elsewhere and requires a dedicated machine design. After partially completing the upgrade program of SIS18, the number of intermediate charge state heavy ions accelerated to the FAIR booster energy of 200 MeV/u, could be increased by a factor of 70. The specific challenge for the SIS18 and SIS100 booster operation is the high cross section for ionization of the intermediate charge state heavy ions, in combination with gas desorption processes and the dynamic vacuum pressure. The achieved progress in minimizing the ionization beam loss underlines that the chosen technical strategies described in this report are appropriate. The latest intensity records and results from the machine development programs are presented.