Author: Soliday, R.
Paper Title Page
MOPPC089 CUDA Kernel Design for GPU-based Beam Dynamics Simulations 343
 
  • I.V. Pogorelov, K.M. Amyx, J. Balasalle, J. James
    Tech-X, Boulder, Colorado, USA
  • M. Borland, R. Soliday, Y. Wang
    ANL, Argonne, USA
 
  Funding: Work supported by the US DOE Office of Science, Office of Basic Energy Sciences under grant number DE-SC0004585.
Efficient implementation of general-purpose particle tracking on GPUs can result in significant performance benefits to large-scale particle tracking and tracking-based accelerator optimization simulations. We present our work on CUDA kernels for transfer maps of single-particle-dynamics and collective-effects beamline elements, to be incorporated into a GPU-accelerated version of the ANL's accelerator code ELEGANT. In particular, we discuss techniques for efficient utilization of the device shared, cache, and local memory in the design of single-particle and collective-effects kernels. We also discuss the use of data-parallel and hardware-assisted approaches (segmented scan and atomic updates) for resolving memory contention issues at the charge deposition stage of algorithms for modeling collective effects. We present and discuss performance results for the CUDA kernels developed and optimized as part of this project.
 
 
WEPPR083 New Sector 37 Chamber Design and Installation for High-Current Operation of the APS Storage Ring 3123
 
  • Y.-C. Chae, R. Bechtold, W. Berg, L. Erwin, M. Givens, J.E. Hoyt, L.H. Morrison, K.M. Schroeder, R. Soliday, J.B. Stevens, G.J. Waldschmidt
    ANL, Argonne, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.
The Advanced Photon Source is a 7-GeV hard x-ray synchrotron light source consisting of 40 sectors. Sector 37 accommodates four radio-frequency cavities followed by a short straight section, which is set aside for the future installation of a diagnostic device. The 60-cm-long section of spool pieces can be isolated by two gate valves and has an independent vacuum pump. The spool pieces are normally under high vacuum condition when the total current is below 100 mA. However, at the higher current required for the APS Upgrade, rf heating causes an unacceptable rise in temperature. We analyzed this situation by wakefield simulation, which led to a new chamber design. Proper fabrication and careful installation with twelve thermocouples ensured a temperature rise under 40-50 degrees Celsius at 100 mA. A brief thermal analysis shows that the present observed temperature rise in the new chamber is mainly due to the resistive wall.